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ABSTRACT

The analysis of a fly-by-wire longitudinal control

system, specifically that of the space shuttle orbiter,

was undertaken in order to demonstrate the construction

of a mathematical model depicting the relationships

between forcing function and response. Each facet of

modern control theory, including stability, was devel-

oped. Several computer programs were written, which

should be of value to the Department of Aeronautics,

for the HF9830 computer/plotter; these programs are basic

to the study of control theory, demonstrate the importance

of the transfer function, the characteristic equation, and

the various forms of feedback, and will plot time and

frequency (3ode) response graphs given the proper inputs.

The Continuous System Modeling Program, version III, and

the IEM360 were used to analyze the complex control system

installed in the Orbiter. The demonstration of the model

and its interface with the CSMP program was given, and the

efficiency of this procedure was made clear.
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I. PHYSICAL DESCRIPTION OF THE ORBITER

The space shuttle orbiter is the vanguard of a new

generation and new concept of spacecraft, having been

designed to fly as an atmospheric vehicle as well as to

operate as a spacecraft in near-earth orbit. In order to

function in this dual role, it requires the performance,

stability, and control systems of both types.

For orbital flight, attitude control is achieved by

means of a reaction control system such as those used in

earlier spacecraft. Whereas earlier vehicles followed an

unguided re-entry and parachute let-down, the orbiter is to

be flown to a runway landing and therefore requires the

conventional aerodynamic roll, pitch, and yaw controls

for atmospheric flight. The longitudinal system for

maintaining the desired pitch angle, pitch rate, and

stability about the pitch axis is the subject of xhis

paper.

The space shuttle orbiter is of conventional design,

incorporating a low-mounted, highly swept delta wing and

a small vertical stabilizer on a thick, rather square body.

Sea level weight of the vehicle, in re-entry configuration,

is approximately 186,000 lbs. The wetted area of the wing





is 2690 square feet, yielding a wing loading of 69 psf

•

Overall length is 122.3 ft, and wing span is 78 ft, 1

The landing speed of the orbiter, necessarily high because

of the wing loading, is 190 knots.

The primary aerodynamic control surfaces are split

elevons at the trailing edge (to perform the functions of

ailerons and elevators) and a combination rudder/speed-

brake at the trailing edge of the vertical stabilizer.

The rudder splits symmetrically along its vertical hinge

to produce aerodynamic drag for speed control, hence its

use as a speed brake. Body flaps are located at the

trailing edge of the fuselage and, although they v/ere

originally intended to provide heat shielding for the

main engines during re-entry, will be used as an active

longitudinal trim device. Figure 1-1 is a three-view of

the vehicle and shows the location of the primary control

surfaces

The elevons are split because of wing deflection and

hinge moment considerations, and are quite large, comprising

twenty per cent of the total wing area. Their maximum de-

flection is 35 degrees up and 20 down; maximum deflection

1 By comparison, the commercial Douglas DC-9 measures
119*3 feet in length and has a span of 93*^ feet.





Figure 1-1

Three-view of the Orbiter





rate is twenty degrees per second.

The speed brake provides additional longitudinal

control in some regimes by generating a pitching moment,

but its primary use is for terminal area energy management.

The elevons are the primary pitch attitude control,

but since their normal deflection is trailing edge down,

the body flap is available to reduce the load on them

Use of the flap enables the elevons to trail as much as

possible and minimizes their chances of overheating.

The body flap is also an aid to longitudinal control at

high angles of attack where the elevons lose much of

their effectiveness. Due to rudder blanking, the orbiter

is in fact directionally unstable in this regime (the

early re-entry phase

)

The existence of a lightly damped

dutch roll mode, however, provides dynamic stability for

the vehicle.

The trajectory followed by the vehicle from orbit

to touchdown is sensitive and complex as with former

spacecraft and occurs as follows. Following de-orbit,

the reaction control system engines orient the orbiter

to a normal front-end-forward top-side-up attitude prior
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to reaching re-entry interface at ^00,000 feet. The angle

of attack during re-entry varies between thirty and forty

degrees. When the velocity decreases to 9000 feet per

second, a slow pitch down maneuver commences which is com-

pleted by 70,000 feet; here, the angle of attack has been

reduced to ten degrees and the velocity to 1500 feet per

second. Terminal area energy management is then enabled

to control airspeed and to position the orbiter to arrive

on the final approach at 12,000 feet, six nautical miles

from touchdown. Most of the phase prior to the final

approach position will be flown at a large roll angle and

at relatively high "g" in order to follow a steeper tra-

jectory. This results in shortening the range and time to

touchdown, which reduces the total heat load endured by the

vehicle and extends the lifetime of the thermal protection

system.

The flight control system itself has three modes:

automatic, control stick steering, and direct. Each mode

may be selected individually for longitudinal and/or

lateral-directional control.

The automatic mode consists of hands-off coupling

of guidance commands through the digital flight control

system to the control surfaces. Control stick steering

11





is a pitch (roll) rate command system for the longitudinal

(lateral-directional) channel with gain scheduled as a

function of the dynamic pressure. This mode is further

compensated for angle of bank and for the pitching moment

created by the speed brake. The direct system relates

controller deflections proportionally to the control

surfaces; this mode will be hopefully unnecessary as the

vehicle is marginally stable longitudinally, even with a

forward center of gravity. "The aerodynamic characteristics

of the orbiter, together with its total dependence on

avionics for flight control, classify it as a digital

fly-by-wire, control-configured vehicle " 2 The entire

approach, from de-orbit to re-entry to touchdown, will

normally be flown entirely in the automatic mode a

2 LCOL C.G. Fullerton, USAF, "Space Shuttle Orbiter Approach
and Landing Test Program," The Society of Experimental
Test Pilots , 1975 Report , page 158

12
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II. DEFINITIONS AMD SYMBOLOGY

As in any field of study, that of automatic control

has many terms which have a particular meaning when used

in this contexto So that further references to some of

these terms is facilitated, the following: definitions

apply:

Anarle of attack: the angle between the fuselage

reference line and the flight path; denoted by oc.

Block diagram: a graphical representation, such as

a schematic diagram, of the physical components of a system

or a set of mathematical equations describing their input/

output relationships.

Eode plot: a plot of the magnitude of response of a

system to a sinusoidal input measured against the fre-

quency of that input.

Characteristic equation: the denominator of a system's

transfer function set equal to zero.

Closed-loop: a system in which the input is affected

or modified by some stage of output.

Control matrix: describes how the control input affects

the plant.

Control system: a set of physical components related

in such a manner so as to control or resulate itself or

14





some other system.

Damping: frictional retardation of the magnitude of

a deflection (displacement) or rate.

Damping ratio: the ratio of the amount of damping

actually present in a system to the amount that would

critically damp that system.

Error signal: the actual actuating signal of the system;

it is generally the difference between the input and feed-

back signals.

Feedback: a signal, which is some form of the output

signal, that is added to or subtracted from the original

input in order to compare the desired output with that

actually obtained.

Forcing function: see Input.

Frequency response: a measure of the output of the

system as a function of input frequency.

Gain: the measure of magnitude of an input or feed-

back signal.

Initial condition: one of the two types of inputs to

a system.

Input: a stimulus applied to a control system in

order to produce a desired output.

Linear differential equation: one consisting of the

sum of linear (first degree) terms; it has the property

15





that the response of a system due to several inputs acting

at once is equal to the sum of the responses of each input

acting alone. An equation may be linearized by making

valid assumptions (approximations) about the system or

by considering the system to operate in a restricted

environment where the variations from linearity are

small (piece-wise linearity).

Open-loop: a system in which the input is not

affected or modified by any stage of output.

Output: the actual response of the system caused

by the input reacting with the various components of the

system; it is not necessarily the response implied by the

input.

Plant: the object or system which is to be controlled.

Reaction control system: a control system which

generates rolling, pitching, and/or yawing moments by

venting jet, rocket, or compressor air exhaust about the

axis desired.

Resolvent matrix: denoted by <3?(s); the matrix which,

when multiplied by the control vector and the Laplace of

the input, yields the Laplace of the output of the system.

Root locus: a method of graphing the roots of a

characteristic equation as a function of gain; useful in

stability analysis.

16





Stability, dynamic: the quality of a system that

determines whether its response to any input will be

bounded or unbounded.

Stability, static: the tendency of a system following

displacement from a rest position, considered positive if

the initial tendency is to return to the original position

State variable: a variable which determines the state

of the system; the state variables of a dynamic system are

the smallest set of variables which completely determines

the behavior of the system for any time t 2: .

Steady state response: that part of the total response

which does not approach zero as time approaches infinity.

Terminal area energy management: a dynamic program

using inputs of orbiter position and velocity to guide

the vehicle to its final approach path, minimizing the

heat load when possible.

Time constant: inverse of frequency.

Time-invariant differential equation: a differential

equation inwhich none of the terms depends explicitly

upon the independent variable, t.-^

Time response: a measure of the output of the system

as a function of time.

3 Only linear, time-invariant differential equations will
be considered in the development of the equations of
motion in this study.

17





Transfer function: the ratio of the Laplace transform

of the output (response) of a system to the Laplace

transform of the input (forcing function) under the

assumption that the initial conditions are zero.

Transfer matrix: the matrix of transfer functions

for a multiple input/output system.

Transient response: that part of the total response

which approaches zero as time approaches infinity.

Undamped natural frequency: the frequency at which

a system would vibrate were it not damped.

Unit impulse: an input whose magnitude approaches

infinity and whose duration approaches zero, but whose

product of magnitude times duration equals one.

A glossary of symbols follows:

a lift curve slope, z-±
dot

b wing span

c mean aerodynamic chord

Ct r-i*
, variation in lift with respect to angle of

attack; generally linear at angles of attack below

the stall region; coefficient of

Cv (^? , variation of Ditching moment about the center

of gravity with respect to angle of attack; must be

negative for positive static stability; coefficient of

18





Cm pitching moment that remains when lift forces

equal zero, coefficient of

e span efficiency factor, relative to the elliptical

wing and lift distribution

f any function, time domain, as f(t)

F any function, Laplace domain, as F(s)

g transfer function, time domain, as g(t)

G transfer function, Laplace domain, as G(s)

I moment of inertia, subscripted as to axis about which

it is taken

K gain

oC Laplace transform of, as qC [f(t)J

o£~ inverse Laplace transform of, as J""[F(s)J

L,M,N moments about X-, Y-, and Z-axes, respectively

p,q,r perturbations in roll, pitch, and yaw rates

p,q,r perturbations in roll, pitch, and yaw accelerations

P,Q,R rates of roll, pitch, and yaw

S wing area

u,v,w perturbations in forward, side, and vertical

velocities

u,v,w perturbations in forward, side, and vertical

accelerations

U,V,W velocities in forward, side, and vertical directions

x,y,z distances along X-, Y-, and Z-axes

19





X,Y,Z axis system, right-handed; also force components

in X, Y, and Z directions

OC angle of attack

6 Dirac delta, unit impulse function cT(t)

<£e deflection, elevon

£ damping ratio

# § pitch angle, rate perturbations

pitch angle, relative to earth, positive nose up

f>
air density

c£ roll ansle, relative to earth, positive right wing

down (see also resolvent matrix)

u> frequency

In order to derive the equations of motion of a

system, a reference frame must be decided upon. The

most natural of these would be a frame in which the

axes were aligned with the physical structure of the

vehicle, one which is called the body-fixed axis system.

Such a system is depicted in Figure 2-1 . Components of

velocities, forces and moments, and distances relative

to their respective axial motions are listed in Table

2-1 o

In the development of the equations of motion for a

vehicle, this reference frame has several advantages.

The rotary inertial properties are constant (assuming

20





applied forces
motion velocity and moments distance

forward
side

vertical
roll

pitch
yaw

u X
V Y
w Z

p L
Q IVI

R

Table 2-1

N

X

y

Figure 2-1 4

k Adapted from McRuer, Ashkenas, and Graham, Aircraft
Dynamics and Automatic Control , Princeton, 1973
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constant mass) so that any derivatives with respect to

time are zero. The pilot senses forces and moments with

respect to the body-fixed frame, calculates his reactions

to vehicular motion and to his changing external environ-

ment in terms of the body-fixed axes, and generally

measures his position (attitude), velocities, and accel-

erations from a body-fixed system. This is especially

true when he is dealing with primarily relative motion,

as in air combat maneuvering.

An alternative to the body-fixed system is the

space-fixed system where forces and moments are measured

relative to an axis system oriented, for example, to a

flat earth, as in Figure 2-2.

Figure 2-2

22





This system, however, has the very undesirable

feature of requiring inclusion in the equations of

motion the variations of moments of inertia of a

vehicle as the vehicle changes its velocity vector

and/or attitude. This system would be ideal for an

aircraft which changed neither, but such is not the

case in this study.

Corrections must also be made to the equations of

motion in the body-fixed axis system, but these corrections

are limited to inertial forces and accelerations and do

not involve changing the apparent physical characteristics

of the vehicle. Further simplifications are enabled by

this choice of systems; one, the small angle assumption

is made possible leading to the linearization of the

equations of motion (see Chapter V); two, the symmetry

of the aircraft across its X-Z plane eliminates several

terms in the equations.

The body-fixed axis system is clearly the better

selection for the development of the equations of motion

of the vehicle.

A definition of "flight control" is necessary in

23





order to identify those parameters of the vehicle with

which the study is concerned. The definition is bor-

rowed from McRuer, Ashkenas, and Graham5

:

"Control: the development and application to a
vehicle of appropriate forces and moments
that

1« establish some equilibrium state of
vehicle motion (operating point control)

2. restore a disturbed vehicle to its
equilibrium (operating point) state
and/or regulate, within desired limits,
its departure from operating point
conditions (stabilization)."

This definition includes the concept of stability and

effectively excludes the domain of guidance,,

In light aircraft, all functions of control (turning,

climbing, accelerating) are performed by the pilot using

the control wheel (or stick), the throttle, and various

other aerodynamic controls, usually the flap handle, which

are directly connected to the device which they operate.

For example, the pilot desires to pull up; he uses some

degree of back stick, the elevator responds immediately

and in proportion to the amount of stick travel, and a

pitch rate is generated. The pilot's environment remains

Ibid.
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relatively constant throughout the flight envelope of the

airplane; a ten pound pull on the stick will give, for

example, 1.3 g's at a given airspeed in every case.

Even for higher performance aircraft operating in

the dynamic environment of air-to-air combat, this is an

entirely satisfactory system." Even though a given ele-

vator deflection will not create the same pitch rate at

20000 feet as it does at sea level, the pilot quickly

compensates for this by modifying control stick position.

However, maintaining a particular pitch angle can better

be performed by an automatic control system. Using a set

of accelerometers to sense minute deviations from an

operating (trim) condition, an automatic control system

can command the rapid and precise control deflections

necessary to maintain the vehicle near the desired flight

condition. A pilot attempting to maintain a given pitch

angle will find his sensory threshold much higher than

(and his response on the controls much less precise than)

an automatic system. This type of system is installed on

many aircraft as an auto-pilot, engaged by the pilot when

desired, to maintain certain flight conditions such as

° Present-day fighters have flight control systems aug-
mented by 2- or 3-axis stabilization to minimize gust
response and other oscillations.

25





heading and altitude.

The development and utilization of control systems

may be taken one step further. When a vehicle, such as

the orbiter, is required to fly in vastly different

environments in the course of a mission, control stick

inputs to obtain a given maneuver may require very dif-

ferent control deflections. Variations in dynamic pres-

sure, Mach number, and altitude create changing values

of control effectiveness, locations of aerodynamic forces,

even stability. The automatic control system can use

inputs such as air density, dynamic pressure, Mach number,

and existing control deflection to compute precisely how

much deflection is required to perform a particular maneu-

ver and how rapidly the deflection should be applied.

The system may also consider variations in stability under

different flight conditions. It will then command that

deflection, measure the response, and make further cor-

rections if necessary, with far greater accuracy and

efficiency than a human pilot.

This then is the principle by and for which the

fly-by-wire system was developed „ In an environment of

changing flight conditions and stability where high

26





control precision is required, the automatic system

significantly outperforms the best of pilots.

27





III. MATHEMATICAL MODELS OF LINEAR SYSTEM ELEMENTS

The Laplace transform is a major tool in the study

and analysis of automatic control systems. It is the

procedure by which time domain performance is connected

to frequency response and results from the correspondence

between the transfer -function a^d the transient response..

The transfer function itself is the ratio of the Laplace

transform of a system's output to the transform of its

input, assuming that all initial conditions are zero.

A graphic representation of such an input-output rela-

tionship is provided by the block diagram. In the block

diagram, of which the transfer function(s) is the hearx,

inputs and feedbacks are represented by their Laplace

transforms, and the paths which the signals follow are

depicted.

Several simplifications in computation occur when

usinff the Laplace transform, among which are (T) differ-

entiation in the time domain is represented by multipli-

cation by s in the Laplace (frequency) domain; (2) inte-

gration becomes division by s (both with regard for initial

conditions); and (3) convolution, or complex multiplication,

becomes simple multiplication.

The equation linking the time domain to the frequency

28





domain is

When the equation of motion for a system can be

expressed as a linear differential equation, the

Lanlace transform reduces the differential equation

to an algebraic equation in the Laplace variable, s.

To illustrate, a damped spring-mass system will be

used.

f / f ' r ' ? * r f f s ff ' / f / f , ,

V '"-

I

mM

Figure 3-1
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Here, my + cy + ky = x(t). Each term is replaced by its

Laplace transform:

*tt) -* XC»)

When coefficients of like powers of s are collected, the

equation becomes

The appropriate values of the initial conditions are

entered, and a simple quadratic equation in s has replaced

a second order differential equation,,

Recalling the definition- of a transfer function, all

initial conditions are set equal to zero, and the ratio

Y(s)/X(s) is found:

W> . __J . GCo
W.

(3-2)

XCs) ms -* cs

where G(s) is a common symbol for the transfer function,,

30





Figure 3-2 is the block diagram of this system where

X(s) is the input or forcing function, Y(s) is the output,

and G(s) is the transfer function (also called the plant

matrix in multiple input/output systems). In this case,

G(s) has been derived from mass properties of the system,

the degree of damping, the spring stiffness, and funda-

mental laws of motion.

X(s) G(s) Y(s)

Figure 3-2

In modeling a system, G(s) will be found in a manner

analogous to the above. All that remains in order to

find the response to any input (neglecting feedback for

the moment) is to multiply the transfer function by the

Laplace transform of the input. The response may be

left in the frequency domain, which is the usual case in

stability analysis, or transformed back into the time

domain to study the dynamic characteristics of the

system, e.g. rise and settling times, maximum overshoot, etc.

Some of the more common inputs are listed in Table

3-1 with their time- and frequency-domain representations.
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The transformations are linear; that is, if F(s) is the

transform of f(t), then a<>F(s) is the transform of a»f(t)

time
x(t)

frequency
X(s) graph

unit impulse 6 (if)
\

unit doublet 6U) s 4

—

\
s

unit step
—

ramp t
< y

sin u>t
10

sinusoidal
S •+ w>

Table 3-1

It can be seen in the first column that the unit

step is the time derivative of the ramp function, and the

unit impulse (represented by the Dirac delta) is the deri-

vative of the unit step* If the latter is not obvious,

consider that the derivative of a function is the slope

of that function at every point where the function is con-

tinuous At t=0, the slope of the unit step approaches

32





infinity, as does the magnitude of the unit impulse At

t=0+ , the slope of the unit step is zero, as is the magni-

tude of the impulse function,,

Since an impulse function is an idealization, it

must be approximated in the real world „ When finding the

Laplace transform of this approximation, any arbitrary

magnitude may be assigned to the "impulse", as long as

its duration is small compared to the time constant of

the system If the duration of the impulse is taken as

the inverse of the magnitude, the area under its curve

will equal one, hence the unit impulse.

Unless otherwise depicted, successive terms along

a block diagram path are multiplied together; witness the

correlation between equation (3-2) and Figure 3-2. This

is true whether dealing with inputs, successive transfer

functions, or other operations such as integration, delay,

or differentiation,, Diagramatically,

X(s) Gi(s) G2 (s) Y(s)

is identical to

X(s). G1 (s)°G2 (s) Y(s)

The resulting transfer function G(s) = Gi(s)»G2(s), or

33





the output Y(s) = X(s)«G
1
(s)«G2 (s).

A feedback signal, on the other hand, is not mul-

tiplied but rather employs a summing junction where

certain signals downstream in the diagram are fed back

and added to (or subtracted from) the input signal, A

typical system with one feedback loop is depicted in

Figure 3-3<> The derivation of the complete, or closed

loop, transfer function follows

X(s) \6
E(s)

7) G(s)
S

B( s

)

H(s)

-Y(s)

Figure 3-3

E(s) represents an error signal, the difference

between the input signal and the feedback signal. B(s)

is called the open loop transfer function; it is the

input signal after being modified by any transfer func-

tions and feedback terms up to the summing junction,,

In this case
B(s) = G(s)«H(s)oE(s) .

Since Y(s) = G(s)«E(s),
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and E(s) = X(s) - B(s) = X(s) - G(s).H(s).E(s)

then E(s) + G(s) «H(s) «E(s) = X(s)

or E(s)fl + G(s)«H(s)] = X(s)

1 + GCs)oH(s)

Substituting the error signal above into Y(s) = G(s)°E(s),

the transfer function of the system due to feedback be-

comes r'(*) - Y (
s

) - G(s)
G {S} - X(s) " 1 + G(s).H(s) °

The second order system defined by the damped spring-

mass system has the unique definition among its properties

that £ ^ ^
- = 2W~ and m ' w" where J = damping ratio

and w* = undamped (natural) frequency. If the equation of

motion is divided through by m, the result is

or t ^ + ^-S^*^ * u*"
t

j
= uC x to

where, for convenience, the input function x(t) has ab-

sorbed a constant l/k. Taking the Laplace transform as

before and letting the initial conditions equal zero,

s + 2 Tuv s + cjw

Or

X6") s
v
- ajw«s w^ .
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If, then, the transfer function of a system may be written

in the format b/(s^ + as + b), the physical characteristics

of the system are immediately evident.

As will be seen in the analysis of the orbiter, the

system transfer function may be factored into two such

second order terms yielding at once the periods and degrees

of damping of both the phugoid and the short period motions,

The damping term offers a further clue as to basic or in-

herent stability of the system When the roots of the

quadratics are obtained from - rr^
S= -3«->* ±u>„J? -1

f the value

of £ determines whether or not those roots lie in the right

half plane (RHP) according to Table 3-2

value of $ roots are

S<c in RHP

1-0 pure imaginary

o< s< i complex with negative real parts

r= f equal, negative, and real

r > 1 negative and real

Table 3-2

The significance of a root or roots in the right half

plane will be discussed in the section on stability©
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IV. STABILITY

One of the prime indices of a vehicle's perfor-

mance is "the measure of its stability, or how, how much,

and how quickly it responds to external forces or control

inputs.

Two types of stability are generally defined, static

and dynamic. Static stability is the vehicle's tendency

to return to its original flight condition after being

disturbed from that condition. A common representation

of the three degrees of static stability, positive,

negative, and neutral, is shown in Figure ^-1. The ball

possessing positive static stability will return to its

original position when displaced, the ball with negative

static stability will continue to move away from its

Q.

C<^
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original position, and the ball with neutral stability

will simply remain in its new position.

The parallel may be drawn with respect to an

aircraft's longitudinal (pitch) response when displaced

from trimmed flight? by a control input or external

force. Figure k-2 illustrates the longitudinal forces

acting on a vehicle where L is the sum of lift forces

produced by the wing and tail and is located on the

aircraft so as to create the same total moment about the

center of mass as would the individual forces. Gmo is

the pitch moment remaining when the lift forces are zero.

7 Trimmed flight is defined as that flight condition
where the sum of all moments acting about the lon-
gitudinal axis is zero, i.e., C^ = 0.
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In equilibrium flight, the moment produced by L

is balanced by Cmo » and n0 pitch rate is generated.

Suppose a gust causes a momentary increase in the angle

of attack. If the lift curve slope is positive (that

is, a higher angle of attack generates more lift), as

are all modern conventional airfoils, the increased

lift will cause the total moment about the center of

mass to be nose down, or stabilizing. The vehicle will

tend to return to its original condition.

If the center of mass should move aft of the lift

vector, the aircraft could still be stable if Cm were

negative (nose down). However, if that gust were to

hit this aircraft, the increased lift would cause a

nose UP moment, increasing the angle of attack, further

increasing the lift, etc. This vehicle then would be

clearly unstable.

Three quantities are necessary to this discussion,

the lift curve slope, the pitching moment coefficient,

examples of which are shown in Figure *J—3» and Cmo . A

vehicle must have a positive lift curve slope ( j£ )» a

negative pitching moment slope (which means an angle of

attack above the trim point causes a pitch down and vice
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ir\re\ polwt

AOA

Figure ^-3

versa), and a positive Cmo i-n order to be statically

stable. Cm is negative when the aerodynamic center

of the vehicle lies behind the center of mass, and a

positive Cmo is designed into the airframe.

Given that a vehicle has positive static stabi-

lity, its dynamic stability may be studied". The

ball in Figure *J—1(a) is dynamically stable; if dis-

placed from equilibrium, it would return to the bottom,

probably overshoot, overshoot again coming back (but at

a smaller magnitude), and eventually come to rest. If

there were no friction, the system would be dynamically

neutrally stable; the amount of overshoot would not vary

from cycle to cycle. If, on the other hand, a magnetic

8 An exception to this requirement for positive static
stability is the orbiter itself. Early in the re-
entry phase, at an angle of attack of ^5°i the orbiter
is laterally unstable due to the blanking of the
vertical stabilizer. However, the presence of a
lightly damped Dutch roll gives it positive dynamic
stability.
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device were installed under the bowl which was timed to

attract the ball as it descended and repel it as it as-

cended, enough velocity could be imparted to the ball

to finally shoot it over the side. As long as the force

supplied by the magnet was by any degree greater than

the forces of friction, the ball would eventually be thrown

from the bowl; this is an example of a statically stable

but dynamically unstable system

Each degree of stability can be exemplified by an

aircraft. A sharp rap on the control stick of a trimmed

aircraft causes a pitch oscillation which quickly damps

out and disappears (positive stability). Most aircraft

have some degree of Dutch roll, a continuous but mild

combination of rolling and yawing (neutral stability).

High performance aircraft, whose stability may be mar-

ginal under certain conditions, can be susceptible to

PIO (pilot induced oscillation) where the pilot plays

the role of the aforementioned magnetic device and

amplifies the pitching motion of the vehicle, with

sometimes catastrophic results (negative dynamic sta-

bility) •

In the more complicated realm of automatic control
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systems involving feedback, high precision approach and

landing sequences, etc., more than just "positive" or

"negative" as regards stability must be known. For one

reason or another, it may be desireable to utilize a

high gain for a particular feedback signal, but there

may be a limit as to how high the gain may be before it

causes the system to become unstable. Certain types of

inouts, generally frequency related, may cause large

increases in the magnitude of response (resonance) and

may require a certain amount of feedback to minimize

these excursions.

Two of the basic tools used for studying the effects

of feedback on a system are the root locus graph and the

Bode plot.

The root locus is a locus of roots; the roots are

those of the characteristic equation of the system. If

the real parts of these roots are all negative, then the

solution of the differential equation describing the

system will involve negative (decaying) exponents, and

the system will be stable. This is the rationale be-

hind requiring roots to be in the left half plane for

stability. Feedback gain can change the location of

these roots and cause a system to become unstable.
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An example is in order. Consider the system shown

in Figure 4-4. where the plant transfer function is

(3-2)
(s+l)(s+2)

and where the feedback is linear and variable in magni-

tude.

?i G(s)

K

Figure 4-4

The closed loop transfer function becomes

(s-2)
(s+l)(s+2) + K(s-2) ,

and the characteristic equation is

s 2 + (3+K)s + (2-2K) = 0.

The roots, for varying values of K, are given in Table 4-1.

K root #1 root #2

-1 -2
0.5 -0.314 -3.186
1.0 -4
1.5 0.212 -4.712
2.0 0.372 -5.372

Table 4-1
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Figure 4—5 is a graph of the root locus of the system.

It may be seen that, as K exceeds the value of 1, one of

the roots moves into the right half plane. That this

'A

6
o
u
J*

3 3

<" o- ^€E= ^0_L 5B- -<£

\n o

-(, -*f -z

Figure 4-5

results in instability is shown by solving the corres-

ponding differential equation for a value of K>1. Let

K=2; the characteristic equation becomes

s 2 + 5s - 2 = 0.

Converting this equation to the time domain by taking

the inverse Laplace transform yields

y + 5y - 2y = 0,

one of the solutions to which is y = e^«372t # Since

y is the output, it may be seen that the output increases

without bound as the time increases. The system is un-

stable for this value of feedback gain.
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The Bode plot depicts how the system will respond

to a sinusoidal input. Gain and phase margins, which are

measures of relative stability, are shown directly by the

plot, as is the magnitude of response at resonance. By

comparison with templates of the proper scale, the degree

of damping may be read from the graph.

The standard representation of the magnitude of

the response is 20 • log (g( ju>)| where joi has replaced s

in the transfer function expression. This magnitude is

plotted against the frequency of the input, which is on

a logarithmic scale so that wide frequency ranges may

be plotted with accuracy. The phase angle, co
, is like-

wise plotted against the logarithmically scaled frequen-

cy, A stable, time-invariant system, when energized by

a sinusoidal input, will have a steady state output of

the same frequency as the input although the magnitude

and phase angle will likely be different.

Since the magnitude of the response is plotted in

logarithmic form, finding the response curve of a com-

plicated transfer function such as

G(s) = -s 2 + 3s + 2

s3 + 6s 2 + 19s + 13

is reduced to writing the function as the oroduct of
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first-order factors, finding the magnitude of each, and

then adding (not multiplying) the logarithms of the mag-

nitudes. From this, it is seen that an increase in gain

merely raises the magnitude curve and does not affect the

phase angle.

In the above example, writing the transfer function

as a function of j<-i
,

Letting ui = 0.1 yields

i^A!± w U(,o,,l, ^7? - o.u«

Then 201n | G( jO.l ) |
= -37. ^38, the measure of magnitude of

the response when the input frequency is 0.1 radian per

second.

The phase angle is

Computing the values of the magnitude and phase

angle over a wide range of frequencies, say from 0.001

to 10 radians per second, enables the construction of
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become

the Bode diagram.

If the function is factored into

G(s) = (s+1 )(s+2)
(s+3+j2)(s+3-j*2)(s+l)

and each term written as a function of jt* , the terms

jp+l jui+2 [3+j(o-2)] ^+j(uH-2)l| ^+1]«

The magnitudes at = 0.1 are, respectively,

1.005 2.002 0„282 0.273 0.995.

The logarithms of these magnitudes are

0.005 o 69^ -1.266 -1.298 -0.005.

which, when summed, total -1,870. Multiplying by 20, as

before, yields -37°^» the same answer

The sum of the phase angles is

5o71° + 2.86° - (-32.3°) - 3^.99° - 5.71° = 0.17°,

approximately the same answer as before.

The factoring method is desired when the Bode

plot is to be approximated by asymptotes, or straight

lines which follow the trend of the function. It does

not consider damping. The former method is entirely

sufficient for plotting the exact function and will be

the one used in this study.
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A third type of graph used in the analysis of a

system is the time response graph, or time historj.

Any forcing function (not just sinusoidal) for which

a Laplace transform exists can be applied to a system,

the output calculated, and the output inverted into the

time domain. This yields a function of magnitude with

respect to time, the plot of which depicts period(s),

overshoot( s ) , rise times, decay times, steady state

response, and gives an indication of the degree of

damping in the system. Its drawback is that its degree

of stability is not easily derived, although it is

usually apparent whether or not the response is bounded.

As has been seen, gain will move the locus of

roots on a root locus plot, sometimes changing the

stability of a system; gain will move the Bode magnitude

plot up or down, changing the relative stability. When

gain is applied to a system, the time history plot

reflects amplification of the magnitude of the response

in proportion to the amount of gain, i.e., twice the gain

yields twice the magnitude.9 For example, if 5° of

elevator deflection create 50 lbs of force and 1000

9 Since we are dealing with linear systems
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ft-lbs of moment, then 10° of deflection will generate

100 lbs of force and 2000 ft-lbs of moment; the pitch

rate created by the latter moment will be double that

created by the former. However, when the gain to be

varied is in a feedback loop, as described above for

the root locus and Bode diagrams, the effects on the

time history are generally unpredictable. The time

history is therefore of limited value in designing a

system; its asset is rather in analysis. All three

types of plots will be used in this study.
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V. EQUATIONS OF MOTION

In confining the study to the longitudinal case,

only the X and Z forces and the pitching moment, M,

are of interest. Each of these may have derivatives with

respect to (1) forward velocity, u, (2) pitch angle, q,

(3) vertical velocity, w, (^) vertical acceleration, w,

and (5) elevon deflection, oc . These derivatives are

labelled, respectively, Xu , X„ t Xw , Xw , Xj , Zu , etc

The lower case subscripts refer to perturbations from

steady state.

The linearized equations of motion in state variable

format, in terms of the derivatives defined above, are:

(5

6 - %
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The state variables are written in the format

W -

and the equations of motion become

u

\

2.

I

Xv, X.
z.„ (u. * K)
(M^ + 7,^ MCr) \k

v *(v>Vm*J
fc •i

-

(^
<

6

<*. { *} = !>]{*} + {%} S '

where \k\ is the plant matrix and \%\ is called the control

matrix.

Some justification is in order for the linearization

of the system equations of motion. Assumptions are also

made to simplify the development and/or to define the

scope of the study. Reference is made to Figure 2-1 for

sign convention and notation in a body-fixed axis system*

linear and angular velocities and applied forces and mo-

ments are identified.
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The first assumption, which both simplifies the

development and defines the environment, is that the

earth is fixed in space. In orbital flight, a universal

inertial frame is necessary due to the spinning of the

earth on its axis and to the more pronounced effects

of the gravitational fields of the sun and moon on a

spacecraft. However, for the relatively short-term

control analysis of this study, a geo-inertial frame

of reference is assumed.

The airframe is assumed to be rigid. This enables

the description of vehicular motion as a translation of

and rotation about the vehicle's center of mass. The

method of application of the thermal protection layer

of the orbiter requires an absolute minimum of relative

motion between and within various sections of the body,

so this assumption of rigidity is especially valid.

The mass and mass distribution of the vehicle is

assumed to be constant. Actually, since no fuel is

being burned in producing thrust and no stores expended

during that part of the trajectory under study, this,

too, is an especially valid assumption.
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For body-fixed axes, the inertial equations of motion

(neglecting gravity) are:

^F* = ^(w +pv -<$u) = Z,

The gravity force, acting only at the vehicle's center

of mass, produces no moments but does contribute to the

external forces; due to gravity,

The combination of the inertial and gravitational forces

on the vehicle yields:

**

Differentiating these equations yields equations of

perturbed motion (where, for example, dU = u):

^r m \w * V.f - ?.* -^ \ ' Q^ (5-1)
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where the quantities subscripted zero are the steady

state (trimmed) values. To arrive at these equations,

U was replaced by U + u, P by P + p, etc, and another

assumption was made: the disturbances from steady flight

are small enough so that the sine of an angle may be re-

placed by the angle itself and the cosine of an angle

equals one. Any products of perturbations are neglected,

The "small perturbation" concept has linearized the

transcendental equations of the system.

Because of the symmetry of the airframe in the X-Z

plane, and because there are no aerodynamic asymmetries

such as propeller slipstream, it is assumed that lon-

gitudinal forces and moments due to lateral perturba-

tions about the trim condition are negligible. Pitch

rate at trim, Q , is defined to be zero. A further

simplification, which now has no effect on the system,

is that P = R = V =
<f>

= zero. This yields

Since the aerodynamic forces and moments on the

vehicle are dependent mainly upon the velocity of the
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vehicle with respect to the air and not upon accelera-

tion of the air mass, all derivatives with respect to

acceleration are neglected. The exception is w, an

important one as it corresponds to the time lag between

a vertical velocity perturbation at the leading edge

and its effect at the trailing edge. It would not exist

if downwash did not exist, but by this very fact, its

magnitude cannot be disregarded. The flow is now

assumed to be quasi-steady.

Altitude perturbations, being assumed small, allow

the neglect of air density and temperature perturbations.

If the body axes are now rotated so that the x-axis

points into the relative wind, W may be set equal to

zero. This orientation forms a stability axis system.

(Since small angle assumptions have been made, pertur-

bations can still be measured in the body-fixed axis

system,, ) Applying this rotation of axes to equations

(5-2.) and taking the Laplace transform of each yields
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A vector diagram of the forces acting on the ve-

hicle will aid in the discussion of the derivative terms

in the above equations; see Figure 5-1 • Note that there

is no thrust force present.

Figure 5-1

The sums of forces in the x- and z-directions is,

for small oc "]£ - L *>* a - D u * <* ~ Lo<. - D

Z s - Qu + Pa)

The velocity, V, is assumed to be equal to U .

This assumption is justified by the following treat-

ment:
V = ^(U + u) 2 + v2 + w2

= v/u 2 + 2U u + u 2 + v2 + w2
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Since u, v, and w are perturbations and are small when

compared to U0f their products may be neglected:

V = ^U 2 + 2U u = U y/l + u/U a U

-XT ^X
Since ^X.= -rru , then

where oc
e

is assumed to be zero. Using the definitions

Similarly &*• ,.\ 2L

Since lift = L = ^ ptT^S C u , then

Finally, where the moment = M = -^
f>"^»

Sc Q-m
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Using the same substitution and differentiation

techniques as above, the rest of the force derivatives

are found.

The q-derivatives:

The w-derivatives:

Am

M f^i§£
"&£-*«

* *T
3

7><x

The w-derivatives:

*^ a(%0

10

l^The non-dimensionalization procedure is discussed later
in this chapter.
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The ^-derivatives:

.x__

Since the forces and moments are proportional to,

respectively, mass and moment of inertia, the stability

derivatives are non-dimensionalized by dividing the

force/moment equations by these quantities; hence, the

appearance of l/m and l/ly i-n "the results.

Some of the derivatives have particular signifi-

cance or are named according to their effect on the

motion of the system. Others may be neglected for

various reasons. A discussion of these items is in

order.

The quantity r- is called the speed damping deri-

vative.

The quantity t— is generally small except at

transonic speeds, the subject of this paper.

The quantity —^ results from aeroelastic effects,
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which are being neglected, and from compressibility

effects, which are not. It, too, is largest at

transonic speeds.

CmQ is damping in pitch and is negative for a

stable vehicle. Its primary effect is on short period

damping.

The quantity *~ is the static stability deriva-

tive, the prime indicator of static longitudinal sta-

bility. Given an increase in angle-of-attack, the

increased lift on the wing (normally, a tail contri-

bution is dominant) will cause a negative pitching

moment (nose down) about the center of mass of the

vehicle. If this is the case, the center of mass must

be forward of the aerodynamic center of the wing, and

the vehicle is statically stable. Considering the

tailless orbiter, it is expected that Cm will be small

compared to a conventional aircraft, becoming somewhat

more negative (more stable) as the vehicle becomes

supersonic and the aerodynamic center moves further

aft on the wing.

The quantity ^~ is the lift curve slope and is

positive and generally linear at angles-of-attack
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"below stall.

Since a change in drag on a horizontal tail is the

main contributor to a change in Xw , and since this drag

increment is small anyway compared to the total drag,

Xw is neglected in further discussion.

Because of the time lag between a change in angle-

of-attack at the leading edge and the change in pressure

distribution at the trailing edge, r-r- is produced.

However, it is a negligible quantity.

The quantity r-r3* will increase short period damping

when it is negative, as is normally the case. It is

non-dimensionalized as .

™
v

The quantities §y and £tJ are both significant in

tailless vehicles, the first being always positive, the

second smaller and sometimes negative. Their ratio may

be likened to L/D. Cm - is elevator control effective-

ness and, as the name implies, is quite important. It

determines how much pitching moment will be generated

for a given elevon deflection. It is sensitive to

center of mass travel, aerodynamic center travel (as

when a vehicle becomes supersonic), and CLm . It is
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a negative quantity for elevons aft of the center of

gravity.

Since « = tan~^(w/u ) = w/u , the terms oc and w may

be interchanged (as may their derivatives) with due

respect for the constant of proportionality.

The non-dimensional stability derivatives intro-

duced on pae-e 6l will be used wherever practical.

In accordance with McRuer's definitions, they are

called basic derivatives because they do not involve

any inertial quantities. They are called non-dimensional

because they involve force and moment coefficients

rather than the forces and moments themselves. They

are useful in that study of the vehicle under different

flight conditions is most easily correlated. It may be

oc t^
seen that, for example, s^jo

is the non-dimensional

form of c< .

The other type of derivative, of which Xu is an

example, is called a dimensional stability derivative

parameter. It will be used in the study of airframe

transfer functions.
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VI. COMPUTER METHODS OF ANALYSIS

The concept of state variable analysis was made

possible with the advent and refinement of the high

speed digital computer. The arithmetical operations

involved in dealing with just a ^x^ matrix are copious;

they include inverting, factoring, solving the equations

the matrix represents (which are often differential

equations), and applying the results to state variable

procedures for obtaining such things as the resolvent

matrix, the state transition matrix, and the time res-

ponse. In addition, most of these results must be com-

puted for many instances of time, say every 0.1 second

for 200 seconds, or for a wide range of frequencies in

order that meaningful data may be plotted and analyzed.

Before the computer methods can be presented, a

description of the underlying state variable theory and

mathematics is necessary.

Conventional control theory, exemplified by the

damped spring mass system in chapter III (pp 29 et

seq ), is adequate for single-input-single-output
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operations but is wholly inadequate for multiple-input-

multiple-output systems. Each additional parameter

introduced as an input or output increases the number

of mathematical operations many-fold.

The set of state variables must first be specified.

In accordance with the equations of motion (p 53 ) » the

set will be (u,w,q,0)« The state vector is seen to be

iw]
|x) =<q y t the control vector is u = 6t , and the plant

matrix and control matrix are shown as [A] and |b} res-

pectively on page 5-2. The state equation for the sys-

tem is then
{x} = [Aj(x} + {b}u .

The Laplace transform is used to solve this non-

homogeneous equation of state:
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Since C^-aY T +

and x LC^-a) J
- X* *t + -^r + — *••• ' e

then XW • cCte
At

] % U) * X[eM]BTSW

Taking the inverse Laplace,

>c(t) r e
At

xl0) * JV^'^WtUt (6-1)

where T is a dummy variable.

The matrix e is written as ^(t) and called the

state transition matrix. Its Laplace counterpart, $(s),

is called the resolvent matrix. The first term on the

right hand side of equation (6-1) is the time response

due to initial conditions; the second term is that due

to the input, Bu.

Just as in the single-input-single-output system,

where Y(s) = G(s)«X(s), here, X(s) = G(s)»U(s), but G(s)

is now a matrix and is called the transfer matrix. The

corresponding closed loop system is depicted in Figure

6-1.

U(s) E(s)
2 G (s)

B(s)

p X(s)

H(s) c

Figure 6-1
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As was developed for the single input/output case,

E(s) = H(s)«X(s)

or, dropping the "(s)" for convenience,

B = HG S

Since X = G [u - B^

= G [U - Hx]

then X + G HX = G U

[i + G H]X = G U

and X =[l + G H]**G U

Writing X as GU shows the closed loop transfer matrix

to be G(s) = [i + G (s)-H(s)}^'G (s). 11

In order to solve the equations of motion, a

computer program will use the a*>ove relationships and

some form of numerical integration. The programs

written by Melsa and Jones c were used in this study,

the main two of which were BASMAT and RTRESP.

1
* Since, in general, [a][b] 1 L B 1I A J* ca^* e must be

exercised in developing the equations by insuring
that both sides are pre- or post-multiplied by a
matrix in the same order.

12 J.L. Melsa and S.K. Jones, Computer Programs for
Computational Assistance in the Study of Linear
Control Theory , 2nd edition, McGraw-Hill, 1973
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Given a basic matrix, [a] , in this case the plant

matrix, BASMAT produces

a. the determinant of [A^, det[AJ

b. the inverse of ^a"] , \_A\

c. the characteristic polynomial, det(sI-A)

d. the eigenvalues of £a"], X;

e. the state transition matrix, $(t) = e

f. the resolvent matrix, <& ( s ) = (sI-A)

Once the state transition matrix is known, the

time response may be found by equation (6-1) whether the

input is in the form of an initial condition(s) , a for-

cing function, or both. The other Melsa-Jones program,

RTRESP (Rational Time RESPonse), was used for this

purpose.

After the mathematical formulation of the time

response is obtained, it is left to graph the results

to see the time history of the system. In order to

facilitate this operation, a program named GRAPH was

written, in BASIC language, for execution on the HP9830

computer. See Figure 6-2. An explanation of the vari-

ables and operations in GRAPH follows:
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! i

' U .0 i i ' LL. j h P; I"
:

":i l

T #" I

STEP
CPL

EQH ARE"
T I NRG

20 FOR 1=1 TO 9

30 CC I 3= PC I 3=Ql I 3=RC [ ]=0
40 me :•; i" I

5 D I S P " H N 1 1 A N V R E R L R T S
'

' i

60 INPUT Ri
70 DISP "HOW MANY COMPLEX ROOT
80 IN PUT R2
90 IF R1=0 THEN 140
100 FOR 1=1 TO RI

110 LISP "INPUT REAL RC

120 INPUT PC [ I

130 NEXT I

40 FOR I=R1+1 TO R1+R2
50 D [SP "REAL I MAG PAR!"

60 INPUT QC I 3 j RC II
70 QC 1 + 1 } = C I J

80 RC 1 + 1 3=-RC I 3

90 NEXT I

200 WRITE ( 15? 210)
2 10 FORMAT 45"*"
220 PRINT" "ROOTS OF CHAR
2S0 PRINT " REAL. PA
240 FOR 1=1 TO Rl
250 WRITE (. 15j310:.'PC I 3>@
260 NEXT I

270 PRINT
230 FOR 1--R1 + 1 i"0 R1+R2
290 WRITE (15 j 310>Q[ I 3iRC I 3

300 NEXT I

3 i I- R M A "!" 4 X , F 1 . 5 » 4 X > F 1 . 5
320 IF R1=0 THEN 370
330 FOR 1=1 TO Rl
340 DISP "COEFF OF EXP < "PC I

3 "TV 3

350 INPUT CC I 3

3b O NEXT I

370 FOR I=R1 + 1 TO R1+R2 STEP 2
3S0 RC I 3=ABS<RC I 3)

3 9 D I S P " C E F F F E X P (
" QC I 3

" T > * C S (

40O INPUT CC IT
4 i D ISP " C E F F F E X P ( " Q C 13 " T ) * S I N >:.

420 INPUT CC 1 + 13
430 NEXT I

440 DISP "MAXIMUM MAGNITUDE OF RESPO
450 INPUT" G9

00 T #" I

:-

;T

"RC I 1

"RC I 3

HSE"S

T >

"

Figure 6-2
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a by SCALE -5 > I 2 s
- 1 - 1 *G9 > 1 . 1 &G9

478 XAXIS @ j 5? 0" 10

480 VAX IS 0. 8 ? G9- 4:i -G9? G9
4 9 I... RB £ L ( # ? 2 . 5 ? 1 . 7 > 8 > 1 ••-' 7

)

508 FOR X-0 TO 18 STEP 5

510 PLOT )U 0j J

520 CPLOT -2. 5 ? -2
530 LABEL (778>X
549 NEXT X

550 FOR Y=-G9 TO G9 STEP 2*G9
560 PLOT Oh Yj 1

570 CP' QT -7 J -0.

3

580 LABEL <788>Y
500 NEXT V

bO0 FOR T=8 TO 10 STEP 0-. 25
610 Y=0

GO SUE 1Q80
i-..' PLOT T?Y
6iO NEXT T

650 PEN
660 DISP "RESET PLOTTER FOR PHUGO ID
670 STOP
€ : w SCALE -15, 2 1 5 j - 1 „ 1 *G9 » 1 . 1 *G9
6 38 XAXI S 0? 25? j 200
7 V A X I S - S j G 9

.

' 4 >
- G 9 t

+- G 9

710 LABEL <#i2.5s2jQj7/10)
720 FOR X--0 TO 200 STEP 58
730 PLOT X? 0?

1

740 CPLOT -2.5) -2 •

"
7 j0 LABEL C770)X
760 NEXT X
7"'Q FORMAT F4.0
"0 FORMAT F8.

3

7-30 FOR T=0 TO 10 STEP 0.25
8 Y = O
810 GOSUB 1080
820 PLOT T?Y
SSO NEXT T

840 FOR T=18 TO 58 STEP 1

850 y=0
SCO GOSUB 1080
870 PLOT T ? Y
880 NEXT T

898 FOR T=50 TO 288 STEP 2
9 8 8 '

i '
=

Figure 6-2 (continued)
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918 COSUB iOSO
926 PLOT TjY
939 NEXT 1"

940 PEN
950 D IS P "I N P IJ T L E T T E R SIZE F R L RBELL I N G

'

' S

969 INPUT Z
^ 7 6 LRBEL C * > Z s 1 - ? t @ j 7/ 1 >

980 DISP "YOU ARE IN THE LETTER MODE"
990 LETTER
1000 DISP "ANY MORE LABELLING"

5

1010 INPUT Z
1020 IF Z=l THEN 950
103O DISP "ANY MORE GRAPHS WITH THESE ROOTS";
104U INPUT Z

1050 IF Z=l THEN 320
1060 DISP " - - - - THE END ----'
1070 STOP
1 8 O RE M S U B R U TINE T C N P U T E MA G H I T U D E F R E S P N S

E

1890 IF R1=0 THEN 1140
1100 FOR 1=1 TO Rl
1110 IF PC I 3*T<~... 5 THEN 1138
1120 Y=Y+CC I 3*EX?-<PC I 3*T>
1130 NEXT I

1140 FOR I=R1+1 TO R1+R2 STEP 2

1150 IF QC I ]*T 225 THEN 1180
1160 Y=Y+CC I 3*EXP<QC I ]*T>*CQS<R[ I 3*T>
1170 Y=Y+CC I + 1 3*EXP < QC I 3*T ) *S I N ( RC I 3*T

)

1130 NEXT I

1190 RETURN
1300 END

Figure 6-2 (continued)
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Cj_: coefficients of the exponential and sinusoidal
terms, the sum of which describe the time res-
ponse

G9s maximum absolute magnitude of the response; used
to scale and label the time history plot

I: counting element

Pj_i purely real roots

Qj_: real part of complex roots

R j_ i imaginary part of complex roots

Rl

:

number of purely real roots

R2: number of complex roots

T: time; see "X"

X: horizontal (time) axis

Yi vertical (magnitude) axis

Z: yes(l)/no(0) value; used to answer various
questions which the program asks of the operator

lines 10-4-0: dimensions C, P, Q, and R and initializes
their value at zero

11 50-310: inputs roots, categorizes them as real or
complex, and prints results

11 320-4-30 : inputs coefficients of exponential and
sinusoidal terms

11 440-590: scales, draws, and labels the axes of
the graph

11 600-650 : plots short period magnitude-vs-time
graph, using subroutine 1080

11 660-94-0: plots phugoid graph, using subroutine 1080
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11 950-1020: allows for labeling

11 1030-1070: allows drawing of other graphs with
the same roots

11 1080-1190: subroutine which computes magnitude
of response at a given time

line 1200: END statement

The values of the coefficients and roots (Cj_, Pi, Qi,

Ri) are obtained from the program RTRESP.

The text Aircraft Dynamics and Automatic Control ,

referenced previously, contains an input/output analy-

sis of an early operational Air Force interceptor, the

F-89 Scorpion. In order to validate the GRAPH program,

this example was run through the BASMAT and RTRESP pro-

grams and the results plotted using GRAPH.

From the given stability derivatives, the plant

matrix and control vector were constructed in accordance

with the state equations on page 50 j for

altitude = 20000ft
weight = 305001b

Mach = O.638
TAS = 660fps

Xu = -0.0097 Zu = -0.0955 Mu = 0.0
Xw = 0.0016 Zw = -1.^30 Mw = -0.0235
X« = 0.0 Z$ = -69.8 M& = -0.0013

*" C
Mg = -1.920
m£ = -26.009
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the plant matrix [a] was

0.0097 0.0016 0.0 -32.2
0.0955 -1.4.30 660.0 0.0
0.000124 -0.0216 -2.778 0.0
0.0 0.0 1.0 0.0

and the control vector was

0.0
-69.8
-26.009

0.0

The input to the system consisted of an elevator

deflection of 0,02 radian commencing at t=0 with a

duration of one second; initial conditions were equal

to zero. The text results are shown in Figure 6-3.

In order to utilize the RTRESP program, a proper

Laplace transform of the input had to be found. The

first choice was a multiple of the unit impulse, in

this case 0.02 <S(t). The Laplace of this input is

0.02(l/l). However, the Melsa-Jones program requires

that the denominator of the Laplace of the input be

one or more orders greater that that of the numerator.

Since this prerequisite could not be satisfied, it was

decided to use a step function input and take the deri-

vative with respect to time of the output, since the
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(ft/sec)

(ft/sec)
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-.1
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(rod)

••' 1— —:--
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(rod)
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time, t (sec)

a) Short Period

L-l_
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(ft/sec)

op- X;

-20 r
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(ft/sec)

20 I-'

.1

f-v-
( red/sec)

(rod)
o'L

l\si tu \i i \ r*

1000

(ft)

-1000 -

.04 |-

(rod)

-.04 r

50 100

b) Phugoid

X- _1 .U 1 J l L-_l L
150 200

time ,t (sec)

Figure 6-3

impulse is the derivative of the step function. The

results of the system's matrix analysis are given in
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Figure 6-4. The results of the step function input are

shown in Figure 6-5 1 and Table 6-1 shows that the periods

and damping ratios of the short period and the phugoid

agree quite closely with the text results.

SHORT PERIOD PHUGOID

BASMAT text BASMAT text

CO* 4.2693 4.27 0.0629 O.O630

? 0.^92S 0.^-93 0.071-7 0.0714

Table 6-1m

The differentiation of the results of the step

function input yielded:

let at
= -2.104339 bj = 3.714746

a2 = -0.00^510971 b 2 = 0.06274506

u = -0.599l48exp(ai t)cos(bi t)
-0.678l76exp(ai t)sin(bit)

+0.599209exp(a2t)cos(b2t)
+20.063997exp(a2t)sin(b2t)
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w = -l,386301exp(ai t)cos(bit)
-92 . 66^985exp( ai t ) sin( bi t

)

-0.005^06exp(a2 t)cos(b2 t)
-0.195852exp(a2 t)sin(b2 t)

q = -0.520226exT)(ait)cos(bit)
+0.1 02383 exp(ai t) sin (bit)

+0.000031exp(a2t)cos(b2 t)
+0.002^68exp(a2t)sin(b2 t)

Q = +0.039993exp(ait)cos(bit)
-0.117850exp(ait)sin(bit)

-0.039l89exp(a2 t)cos(b 2 t)

-0.002065exp(a2t)sin(b2 t)

Figure 6-6 shows the time history of this system.

The magnitudes of vertical velocity, pitch angle, and

to a lesser degree, pitch rate were decidedly in error.

Furthermore, the initial condition of zero pitch rate

was not reflected in the results.

The discrepancies are due to the improper descrip-

tion of the input. Clearly, the effect of a maximum

elevator deflection acting over a short period of time

(A t « 1) is different from a much smaller deflection

for one second, hence the magnitude errors. The

initial condition error is due to the indefinite

integration of the input. When the input is integrated

(multiplied by s ) , the denominator loses a root at

s=0 and its associated eigenvalue. The time response
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therefore loses an exponential term, and the initial

conditions are not satisfied.

The undamped natural frequencies and damping ratios

are calculated from the roots (eigenvalues) of the

characteristic equation by considering the roots in

vector form.

ti<\ ' \ * * **

T--

<&,

where the roots are expressed as X = a + jb and were

calculated by 3ASMAT.

The second attempt to duplicate the given input

function was to evaluate the results of the step function

(x0.02) at t=l and use these values as initial conditions

for a zero-input system commencing at t=l. The values of

the state variables at t=l, calculated from the RTRESP

program (see Figure 6-5) were
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0.9938
-21.8208
-0.0035
-0.0623

When these values were run through RTRESP as initial

conditions, with the input function now zero, the

results were inconsistent with common sense. For

example, the response of the system with an initial

condition of 0.9938fps of forward velocity perturbation

and no input yielded a change in U of over 300fps with-

in ten seconds (the initial velocity of the aircraft was

but 660fps).

Using the state transition matrix from BA3MAT, a

program called ICRESP was written to solve the response

due to an initial condition with the equation

x(t) = §(t)-x(0) .

The results, shown in Figure 6-7, are much more con-

sistent with the earlier figures. In the output por-

tion of the print-out, Al refers to the real part of

the first root, Bl to the imaginary part of the first

root, and likewise for A2 and B2. The matrix E is the

matrix of coefficients of the state transition matrix,
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pf-pi !• ROGRRM ICRE3P

it? DIM EC 16 j 4 ').- DC 4s 1 3? XC 4j 4 ]

29 MAT READ E

3 D A T A -' 5 - 2 9
:

' 4 E - 8 5 ? 8 . 9 3 5 6 3 1 9 75? 1 . 1 2: 3 3 1 7 6 ?
- 8 . 8 6 1 5 9 6 9 6 7 ;.:

4 D A I' A 9 ,: 1 3 9 7 ? 1 ? - 8 . 8 1 8 7 7 9 » - . 9 42425
5 8 D A T A "

- 123186? 1 . 8 79 4 1
E - 6 s 1 5 - . 9 8 6 9 4 2

4

60 DATA 2 . 1 5682E-85 9 @ . 00 1 1 8434 j -0 . 878526 ? -5

,

? 1 775E-05
7 DATA -8.888212 4 3 4 ? - 8 , 5 8 3 3 ? 1.31718? - - 8 4 4 2 8 4

3

30 DATA -8 . 828049 ? 8 . 181 64849 ? 177 „ 653 ? -8 . 1 404 1 269
90 DATA - 3 . 6 8 5 4 3 4 9 E - 8 5 ? - 8 . 5 8 1 4 8 7 2 7 ? - . 1 8 1 2 1 7 ? 8 . 8 8 6 7 3

£

100 DATA -2. 89265E-05? 8. 880671698? 8. 224737? -0, 808219278
118 DATA 1 ? -0. 80356826? -1 . 128878? 0. 88154686
128 .DATA -8. 810039? -7.91 135E-05? 0. 01 06.21 86 9 8„ 09424925
1 3 DATA 8 . 8 8 8 1 2 3 1 8 7 ?

- 1 . 8 7 8 6 E - 6 ? - 8 . 8 8 7 3 7 E 5 ? 8 , 8 8 8 6 9 4 2 €

1 40 DATA -2.1 56E-85 ? -8 . 00 1 1 849 ? . 8785 1 7 ? 1

150 DATA -O. 071393? 8. 60373556? -40. 203644? -513, 19824
160 DATA 8. 0089086? -0. 00685144? 8. 39170456 ? 5. 1588733
178 DATA -7. 49E-36? 7. 5133E-85? -8. 884389544? -0. 863124955
180 DA TA 8 . 801 960482 8 - -8 . 8081 1 5822? 8 . 88427627 » 8 „ 8829603
190 NAT READ D

200 DATA 8. 9937396 h -21 . 328388? -8. 835139? ~-8„ 0623077
210 FOR 1=1 TO 4

220 FOR J=l TO 4

230 XC I ? J 3 = 8

248 NEXT J

250 NEXT I

260 FOR 1=1 TO 4

270 FOR J=l TO 4

280 FOR K=l TO 4

290 XC I ? J 3=EC I +4*J-4 ? K ]*DC K ? 1 J + XC

1

9 J 3

30O NEXT K

310 NEXT J

328 NEXT I

338 PRINT " EXP(A1*T) •*

348 PRINT " COS<Bl*T)
358 PRINT
368 MAT PRINT X
378 END

EXP<A1*T> *

sin-::bi*t>
exp(A2*t:.' *

COS 1
- B2*T >

? hi---"'

5IN<B2*T)

EXP<A1*T)
COS<Bl*T

EXP<A1*T) *

SIN<B1*T)
EXP<A2*T> *

COSC B2*T >

E- P' A2*T

>

SIN<B2*T

-0.2265848 3

8

-21.38429374

-8. 035259095

-0. 023069852

0. 86 2317347

10.21744129

u. 133175139

8 . 322561 168

1.228327219

-8, 814495928

1 . 23026E-04

-0 . 039232668

28. 0343695 q

1; i „ 20225 it LO

2„ 4580SE-03

8. 61228E 84

Figure 6-7
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D is the matrix of initial conditions, and X is the

matrix of coefficients of the output. The time his-

tory plots of the results are shown in Figure 6-8.

Since the results were so consistent with the earlier

program, it appeared as though the reason these figures

were not coinciding with those of the text was that an

error existed in one of the two Melsa-Jones programs.

The results of BASMAT (the determinant, the in-

verse, the characteristic polynomial, the eigenvalues,

and the resolvent matrix) were computed by hand and

found to be correct. The program RTRES? calculated the

same eigenvalues as did BASMAT; its only problem

appeared to be in the coefficient of the sine term of

the phugoid root in the forward velocity expression

when initial conditions are present. The equations

of state from RTRESP were verified on the HP9830 by

writing a program called STRESP which calculated the

response of a system to a step input by using the for-

mula .
r .

x(t) = $ (t).£(0) + [A] [$(t) - l]{Bj-k

where £a] is the plant matrix, ^Bj the control vector,

k the gain (magnitude) of the step input, and c$ (t) the
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state transition matrix. In this case, x(0) = 0.

The program and results are shown in Figure 6-9.

Several other approximations to the desired input

were tried, the first of which was

5(tl x ± €xp [-Ttt*/V] £r T<ci

Transforming into the Laplace domain,

AM

6 A

The solution was obtained by the use of Bonnet's

Theorem (the Second Mean Value theorem) which states

that r fe
ri x ,

fV

JfMjW* - fCW) ^CW) -
I

frit) {'(flat

i

.It) IXwhere &w » f'

For -fit) s e where w. - "Ti. and A. lw * £

and £'(t) - -J«te
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re: H PROGRAM SIR ESP

1 ii D IN Hi 4 ? 4 ] s PC 4 j 4 ] :i QC 4 ? 4 ] ? RC 4 i 4 ] ? SC 4 ? 4 ]

, H i D I M B C 4 ? 4 ] :• C C 4 ? 4 3 ? B C 4 » 4 3 ? E C 4 ? 4 ] ? F C 4 ? 1 ]

38 D I M WC 4 ? 13 j XC 4 ? 1 3 ? YC 4 ? 1 3 ? ZC 4 ? 1 3

40 NAT READ B

50 D A T A -5.2 9 7 4 E-@5 ? . 85 68 1 97 5 ? 1 . 12 8 8 1 7 6 :>
- - Q 1 5 9 9 6 7 2

6w DATA 0. 01 80397 j 1* -0. 01 8779 j -0. 0942425
7u DATA -0.000123106s 1.87941E-06? 1 j -0. 00069424
86 DATA 2. 15602E-05? 0. 001 18484? -0. 078526:. -5. 71775E 05
90 MAT READ C

100 DATA -Q.0002124 3 4 ? - . 5 8 3 3 ? 1.3171 8 "
-

,. 4 4 2 4 3

1 DATA -0 . 020049 ? . 1 8 164349 ? 1 77 . 653 ? -0 . 1 404 1 269
20 DATA - 3 . 6 5 4 3 4 9 E ~ 5 ? - . 6 58 1 4 8 7 2 7 ? - « 1 8 1 2 1 7 ? , @ 6 7

2

30 DATA -2. 09265E-05? 0. 000671693? 0. 224737? -0. 000219278
40 NAT READ D

50 DATA 1 .« -9. 00856826? -1 . 128878? 0. 00154686
60 DATA -0. 01O039? -7

, 91 185E-05? 0. 010621 86? 0. 09424925
70 DATA 0. 000123107 ?

- 1 . 8706E-06? -8. 88737E-05? 0, 0006942£
30 DATA -2. 156E-05? -0.0011849* 0.078517?

1

90 NAT READ E

200 DATA -0 . 3 ? 1 89 3 ' . 60873556 ? -40 . 203644 ? -5 1 3 . 1 9324
2 1 DATA y . 9 8 6 ?

-
,, 00605144? . 39170456? 5 » 15 8 8 ? 8 3

220 DATA -7. 49E-06? 7. 5133E-05? -0. 004389544? -0. 063124955
230 DATA 0.00196

@

a 2 S« - . 0001 15022? . 0042762 7 ? 8 2 9 6 3

24 NAT READ A
250 DATA 0? -9. 64173? 633. 3179? 3136. 736
260 DATA 0? -0. 055395 ? -42. 6289? -81 . 36226
270 DATA 0? 0? 0?

1

288 DATA -0. 031056? 0. 0029017? -0. 194407? -2. 45521
290 NAT READ F

380 DATA ? -6 9 . 8 ? - 26 . 9 ?

J 10 NAT P=A*B
20 NAT Q=fl*C
50 NAT R=fl*D

340 NAT 3 =A*E
358 NAT W=P*F
360 NAT U=<0.02>*W
370 NAT X=Q*F
380 NAT X-(0. 82>*X
390 NAT Y=R*F
400 NAT Y=<0.02)*Y
4,0 NAT Z=S*F
420 NAT 2~(0.02>*Z
430 PRINT "THE TINE RESPONSE OF THE STATE? XCD"
440 PRINT
4 5 P R I N T " V E C T R C E F F F E X P < - 2 . 1 8 4 3 3 8 ) T * C S < 3 . 7 1 4 7 4 4

Figure 6-9
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NC 1» i 3? W[ 2 j 1 3 j WC 3? 1 3>WL'4j 1 ]460 PR IN
470 PR IN'

4 :iJQ P R I N T '

' V E C C E F F F E X P < - 2 . 164 3 3 8 > T * S I N < 3 . 7 I 4 •

499 PR IN
500 PR IN
510 PRINT
5i-0 PR IN"

500 PR IN
5 4 9 PRINT " V E C T F: C E F F F E X P < - . 45 1 1 2 9 ) T * S I \ I ( . 9 6 2 i

: " 4 ;

' 8 6 > T

556 PRINT ZC 1» 1 ]»ZC2»13»ZC3j13»ZC4i 1]
560 END

r
'

' v e c r o r c

o

e

f

f o f e x

p

< - 2

.

104 3 3 s

>

T XL 1? 1 3jXC2j 1 3jXC3) 1 3>XC4j 1 3

I"

'

'

i~ (

;

T F C b F F OF E -P < - . 4 5 1 1 2 i-
1 ' T

*

i. S :

. 8

6

F YC li 1 3»YC2j 1 3 j YE 3 j 1 3»YC4i 1 3

T

THE TIME RESPONSE OF THE STATE) X<T

'EOT OR COEFF OF Z',

0.233872S32 t
c

i. 104338)T*COS(3.714?44)T
312519 • 0.O3919 3 6 1

8

. 1

9

4 8 3

3

4

1

V E C T F: C E F F F E ,, P : 2.1043 3 8 ) T * S I N (. 3.71 4 7 4 4 ) T
-0.045144590 1Q.41547062 -0.117841383 0,021596520

*

V E C T R C E F F F E X P .

- . 4 5 1 1 2 9 > T * C S < . 6 2 7 4 7 6 ) "I"

- 3 18.7 8 7922 8 : . 206 3 059 3 3 -0.0 3 9 1 8 8 8 53 . 7 7 5 8 3 4 8 9

V E C T R C E F F OF E X P ( - . 45 1 1 29 ) T * S I N ( 0-06 2 7

4

7 6 )

T

--
i. 3 . 3 5 349032 0.975818325 - 2 . 6 3 8 6 E - 3 -0.61 9 6 5 7 7

Figure 6-9 (continued)
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Substituting,

03

ca

fm %
Mi* - f(-)6t-)- fan*)*

p

GO

2J. jO'c'^e'^M

'°V ,t a«f -"V 2-i
f

-«t -'Si-
ft e <tt = 7 / « ^ ' J '

a e ^

Combining terms,

(^^Oj^V'V * C-v 5 2 /*

I
e e M 0<

For T = 0.0 1 , * =
"

3\v^\©
000 »

f e e ^ ,0&01
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Multiplying by the magnitude of the input, 0.02,

yielded

The magnitudes of the results of this input were

too small, the probable reason being that half of the

function exp(^^/ Tl") lies to the left of the t=0 axis

and is contributing nothing to the inputs

The application of a 0.001 second delay to this

function would place 99^ of it to the right of the

t=0 axis, countering the problem that existed originally.

A time delay of 0.001 seconds corresponds to multiplying

the Laplace transform by e
~°» 001 s

# Approximating

e-0.001s by -the series

•J i
(o.ool ) s, (0.00^ s

1 - O.OOU + £1
~ ^T~

94





R(s) becomes /o. 000001s 2 - 0.0005s

(

+ O.05V 6.2832 \

/^62832 + s/

- 90C77 c fe
2 " 500s + 500.000

)- 795^7.5^ s + 62832 J*

Again, N(s) is of greater order than D(s).

The correct answer was finally reached when a

variation of an earlier idea (using the response at

t=l from a step function as initial conditions) was

pursued. In this case, the two steps v/ere combined into

one by summing two step functions, one commencing at

t=0, the other at t=l and negative in sign. The

graphical representation and summation is shown in

Figure 6-lk,

si

-I

i r—

i

I

Figure 6-1*4-

In the time domain, the result is written

r(t) = l(t) - l(t - T ), where T = 1.
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The Laplace was easily found and was

Searching for an approximation of e" s which would

satisfy the requirement for the order of the numerator

13
to be smaller than the order of the denominator led to J

e

Substituting into R(s) = 0.02( 7 - | e."
5

) yielded

fc(s) = 0.0H
14 + s

x

HS * a^5 + ts* -* s*
j

The results of the RTRESP computations and the time

history plots are shrcwn in Figures 6-15 and 6-l6. Their

agreement with the text figures confirmed the accuracy

of the RTRESP (for other than initial condition inputs)

and GRAPH programs and provided a valid approximation

of a finite impulse-type input,

*^ Ogata, Modern Control Engineering , Prentice-Hall,
1970, p wm
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VII. LONGITUDINAL FEEDBACK

The primary purpose in using feedback in a control

system is to reduce the system's sensitivity to external

perturbations. In the open loop system, the area of

main concern is calibration; in the closed loop sys-

tem, it is stability. Use of feedback can enhance the

rapidity of response, reduce errors of response, and in-

crease damping to satisfactory levels; it can also over-

correct errors or decrease damping to the point where an

otherwise stable system becomes unstable. It is of in-

terest, then, to be able to "measure" the stability of

a system.

The stability of a system may be ascertained by

an analysis of the characteristic equation of the system,

that is, the denominator of its transfer function.

Simply stated, if the real part of every root of the

equation is negative in sign, the system is stable.

That this is so is manifested by the relationship between

the roots of the characteristic equation and the solution

of the differential equation which it represents.
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For a multiple input/output system, the feedback

effects on the transfer functions must be dealt with by

matrix manipulation

The solution to the system of differential equations

x = [k[x + {b}u •

was seen to be, in the Laplace domain,

x(s) = [sI-Ay'{b}u(s) = [*(s)]{b}u(s).

The open loop transfer function was then

where (^ ( s ) is the resolvent matrix. In a ^x^ system,

the transfer function is written

102





5o(s)=

% <fci. «?„ <P,H

*M ^v 4>„ ^
<*'• <&* «P» <&

^ 4>*V ^ <flnf

2 <?y bj /a

j= i,...,a

The last quantity will be written

where ^ = det[sI-Aj

Applying the feedback signal to a particular parameter,

for example, Xt, yields

H = \_0 h Oj

where the block diagram is

u(s) Pt>
x( s)

(The solid arrows are used to signify a multiple input/

output system. ) The closed loop transfer function is
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G(s) -
1 + G H

In matrix format, (g(s)] = \l + G h] (g (s)}.

To find this matrix product, the matrices were taken

term by term:

[i + g h| =

1 hGi
1 hG2

l+hG3
hGij, 1

[i + g h]
' =

l+hG 3
I+I1G3

-hC-i
-hG2

1

-hGz^ l+hG3

where &' = det [i + G h] = 1 + hC-3

Finally,

tl^fe-w}"
1

^)} 5

(^)A (uh^)a

A+ VkX^^j
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The closed loop transfer function is then

{GcCs)}

j

& -V V\(fe,^, -v \)V^JX + \* 3 vfn * \> H vf,^)

In the general form, the first subscript of wp in the

denominator will vary as the feedback parameter is

varied. Regardless of the form or magnitude of h, only

the denominator is affected; the numerator is a function

solely of the openloop resolvent matrix, $ ( s ) , and the

control vector, \b}«

The most important characteristic of the transfer

function is that the frequency response may be obtained

by letting s = jt*i , where c6 is the applied sinusoidal

forcing function. That this is so is shown by assuming

that the output contains a sinusoidal component of the

same frequency as the input in the form

A-R(ci )»sin£o t + ^(u)j

where A is a constant, R(o) is the magnitude, and q>(ui)
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is the phase angle between the input and the response.

For an input of Asinuit, the Laplace of which is

Ao
s 2 + ^

the output is

/ x nf \ / \
Au>G(s) _ A u>G(s)

y(s) = G(s)r(s) = ^^ "
(g + ^ )(s I J^

Using partial fraction expansion:

y(s) =
, lX + . v + transient terms

Assuming the transient solution is stable allows the

transient terms to be dropped, so

i,=

Solving for y(t) by taking the inverse Laplace transform:

y(t) = —:— e + -^—

e

(7-1)

Since G(ji^) is complex, write it as

G(jU) = x(oi) + jY(oi) and G(-jui) = x(u>) - jY(^ )

Au>6lO
A 6 0^
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where |c(jO)| = Jx 2 (o) + Y 2 (o) and argG(j<» = tan- 1^^-.

Substitute into equation (7-1):

;jW = - |[x(u)-jYM]e
i-t

+ A[XM +JYM)]e

where * = T«aa -£^) *

This is the same form as the assumed input, so that

jut

R(s) becomes ^ X 2 (oi) + Y2 (ui) = |G(ju))|and the phase

angle ^(oi) becomes tan^Ytuij/xCui) = argG( jiA) •

It becomes a simple matter to apply a feedback to

a plant matrix, obtain the transfer functions in each of

the variables, and plot the magnitude of the responses

to a sinusoidal input against the frequency of that
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input o This plot is termed a Bode (Bo -dee) plot, named

for its developer, H.W. Bode. One of the important

uses of the plot is in measuring the stability of a

system.

In order to facilitate construction of a Bode plot,

and in order to avoid relying upon asymptotic approxi-

mations of magnitude and phase angle, a program named

BODE was written for the HP9830 computer/plotter. Using,

as input, the stability derivatives and the type and mag-

nitude of feedback, the program prints out the resulting

transfer functions (in the Laplace domain), repeats the

feedback inputs, and, for given limits of frequency and

magnitude, constructs the Bode diagram on semi-log paper.

The feedback form may be linear, integration (l/s), or

differentiation (s).

The program, listed in Figure 7-2, is explained:

line 10 dimensions open and closed loop matrices

11 20-60 defines variables in terms of stability
derivatives;

XU = Xu
xw = xw
XDE = Xjt
MWDOT = M^ , etc.

line 70 iterates program for x^, X£i xi, and x^
(u,w,q, &) outputs
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.
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73 FOR J-i T'O

8@ WRITE C !.5? :'

98 FOR MR T 45"*
160 PRINT
110 DEG
120 T3=0
138 UO-lOlb.9
3.48 G=32.073
{

-: y ;
•[ ™ - y !

y |
:
i 9 ','•'

16"0 X2 = 8. 00l6
170 X8=0
130 X4~=u

l 9 ;

:

:

:' Z 1 - -•
. 9 5 5

20O 12= -1 . 43

in ;
i

r
'i

; r yy I :»!

...
"

:

'

1 M 4 :== U 8 HI 2

2
'

:, ;6-- 26, 1

26 '! ir
0H: 1 = 1 TO 7

290 DC I 1-0

3 i- 1
1 R r

:

..
- : 1 T 7

310 Ml I»K3=0
320 NEXT K

338 NEXT I

340 DC 5 3-1

358 NT 3? 4 3=M6" +Z3*M3
368 NC 4*2 3=23
378 NL4j 1 3 = X3
338 DC 4 1= M5 Z2-X1
3 9 N [ 2 j 4 ] = X 3 * :. Z 1 * M 3 * M 1 > + Z 3 *

4 N [ 3 j 2 1 = X 3 * Z 1 - Z 3 * < X 1 + M 5 ) + M 6 * U £

4 1 N [ 3 ? 1 ] = - X 3 * < Z 2 + IT 5 > + Z 3 * X 2 + X *

M5 + Z24 2 O [i [ 3 3 = Z 2 * M 5 •-
>i 2 * Z 1 + X

1

430 NC 1 j 4 ] = X3*(ZI *M2-Z2
440 NC 2:. 2 3=X3*<U6*M1 -Zl
450 NC2j 1 ]=X3*(Z2*M5--M4
4 60 DC 2 ] -• - X 1 * ( Z 2 * M 5 - M 4. ) + Z 1 * ( X

2

4 70 NC 5:- 4 ]=NE 5? 3 3=8
480 NC4?3 3=M6
4 9 I- -I C 3 ? 3 3 = - M 6 # ';

: I.
- M 6 s Z 2 + M 1 * X 3 + M 2 * Z 3

5 y N C 2 j 3 3 = M 6 * X 1 * Z 2 + M 2 * X 3 * Z 1 + M 1 * X 2 * Z 3 - M 1 * X 3

1#M3 .'-Mb- ' -A +-Z2

W\6
>-M4-Ml*X4

Ml> +Z3*ail*X2-ri2*Xl
M5>+Z3*X1 *M5-U0*M6*
-Z3*<X2*M5+G*M3>-M6

*M5+G*M3) Ml*

) +
•, i

*G

Pib*'-.

+-X4

i- Mb-*

2* Ut

(M6

i-G)

Zl-Ml
3-MS*

l'!.

Mfc -<• 2 •••2 1 - r" ,:.:*' I * :

Figure 7-2
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L
.

!

:
i HI Is : 3 =

L

; .
i: Ml. i .< 2 ']•-• G ? ' ..'

;!

'

!

: -i'lb*Zi .'

5 :
i

;
: N[ j. , 1 3-G* ' lib •.'..

. Z3*M2
540 D[ i ]-G*< Z1*M2-M1*Z2)
5 5 @ D I S P '

I S F D 13 1 9 j L I N E fl R » S j R 1 ' 3
'

' \

56U [HPUT Z
5,"'0 IF 2 = THEN 940
580 IF Z=l THEM 610
590 IF Z = 2 THEN 686
600 IF Z=3 THEM 790

- 610 DI3P " INPUT FEEDBACK GRIN"?
620 IMPUT K

630 PRINT "FEEDBACK IS LINEAR 5 '

640 F'nP 1 = 1 TO 7

650 DC I 3= DC I

]

ML I > J 3*K
66 O ME XT I

670 GOTO '3EU

6S0 DISP "I MP LIT FEEDBACK GRIN"!
69tf IMPUT K
"

-i PRINT "FEEDBACK FORM IS K*S"
[0 FOR 1=7 TO 1 STEP 1

.:
.> :•[ 1 + 1 j J3 = NC I? J]*K

' -j NEXT I

"40 3[ i t J 3 = 9
?50 FOR 1=1 TO ?

7 63 DC I 3=DC I 1 SC I ? J 3

770 NEXT I

780 GOTO 960
790 DISP "IMPUT FEE BUCK GAIN"?
SOU IMPUT K

816 PRINT "FEEDBACK FORM IS K/S"
820 FOR 1=7 TO 1 STEP -1

S3U DC 1 + 1 ]=D[ I J

840 NEXT I

850 DC 1 1=0
860 FOR 1=1 TO 7

370 DC I 3= DC I 1-HL h J J*K
830 NEXT I

390 FOR 1=7 TO 1 STEP -1

900 ML I + 1?J3=NC i, J 3

910 NEXT I

320 NC 1 j J 3 =

9 3 G T 9 6 O
940 PRINT "FEEDBACK IS NOT APPLIED"
9 5 G T 9 7

968 PRINT "FEEDBACK GRIM IS "K
9 7 P R I N T '

:

T R A M S F E R F U II C T 1 M C E F F I C I E N T S '• I N C R E A S 1 1 1 G F i
•! E i

;;
' 3 F

930 PRINT
9 9 O P R I N T " C E F F I C I E N T S F M U M E R A T R

"

1000 FOR [=1 TO 7

Figure 7-2 (continued)
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L0 I.U RINT ML 1 j J J

1020 NEXT I

IS 30 PRINT
1 6 4 Q P RINT '

i E P F 1 1 J I E N T' S F D E \ 1 1'l I N 1

1

T R ' C 1

1

R I

;

: E Gl N .

'

"

10 50 FOR 1=1 TO 7

1060 PRINT DC I 3

1870 NEXT 1

1 8 D I S P
'

' R L fl i : E i

::;
' R P E R hi P L I" T E R

'

' 5

1090 STOP
1100 DISP "INPUT -0/ URN <DB)"5
1110 INPUT GO
1120 DISP "INPUT OMEGA MINIMUM";
1130 INPUT UU
11.4U GOSUB 1650
1150 F R L = L G T < ) + 1 T L G T ( ':. + 5

11S0 X=10+L
1170 FOR 1*1

=:•:.- 10 TO X STEP X/50
1 1 3 X L J ] = ( N L 1 :< -J ] - N C 3 > J ] * N i 2 H\ L 5 » J 3 * W 1 4 - N C 7 > J 3 * W l" 6

)

1 1 9 :•
=: l j ] = x c . j i + ( n l 2 s j ] * w - n c 4 j j ] * u 1 3 +• h i: 6 ? 1 * u 1 5 > t 2

1000 XC J 3=SQRCXC J 3)

1 ? i Y L J ]
::=

'
II C 1 1 - D L 3 3 * ML 2 -I- DC 5 3 * W t- 4 ) 1

2

1 2 2 '

r' C J ]
=

' i

•'

C J 1 + < D C 2 ] * W - D C 4 3 * N 1 3 + D C 6 3 * l i
r- 5 ) 1

2

1230 YCJ]=SQR(YCJ 3)

1240 RC J 3=XC J 3/YC 13

1 1 5 I F 2 * L G T ( R L J J ) < G 9 •- 1 4 T H E N 1 2 7

1 2 6 13 P L T L G T < W ) » 2 * L G T ( R L J J

)

1270 NEXT N

1280 NEXT L

1290 PEN
1 3 O P L T L G T '• ) + . 1 » G 9 -In 1

1 3 1 L R B E L < * h 1 . 2 > 1 . 7 , » 7 / 1 > " D E C I B E L S

"

1 3 2 P L T L G T ( ) + 2 . 2 j G 9 - 1 4 j 1

1 3 3 O LABEL (*>1.2»1.7»0j7 •'' 10)" R fl D I fl N S ••••' S E C N D

"

1340 PEN
i 3 5 O G S U B 191
1300 FOR L=LGT<O0)+1 TO LGT(O0)+5
1370 X=10+L
1330 FOR N = X--10 TO X STEP X/50
1390 T9 = T3
1 400 1 =NC 2 j J 3*W-HC 4 p J 3*W*3+NE 6 * J 3*W+5
1410 2 = N C 1 j J 1 - N C 3 j J 3 * W 1 2 +N E 5 » J ] * W + 4 -

1
! L 7 » J 3 * N I- 6

1420 Q3=DE 2 3*W-DE 4 3*W+3'+DE 6 3*W+5
1

4

3 O Q 4 = DC 1 3 - D C 3 3*W+ 2+ D E 5 3* W

1

4 - D E 7 J * W *

6

1440 GOSUB 2O30
1450 T3=T1-T2
1460 IF flBS<T3-T9><180 THEN 1500
1470 T3=T3+360
1430 -IF flBS(T3-T9><lS0 THEN 1500
1490 T3 = T3'-720
1500 IF T3<-30O THEN 1520

Figure 7-2 (continued)
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I

'•:

! 6 PLOT LGT< H) > T 3

1520 HEX!" W
I 530 NEXT I.

154Q PEN
550 IUSP "INPUT LETTER SIZE"?
560 INPU1 Z

570 LABEL (*? Zj 2? 8? 7 •••'10)

580 IUSP "VGU ARE IV. I"HE LETTER MODE"
590 LETTER
600 DISP "ANY OTHER LETTERING";
610 INPUT Z

620 IF Z=l THEN 1556
630 NEXT .

6 4 S T P

6 5 ; C H L E L G I
' u > - 5 1 L G I" ( ' + 5 - 5 > G :l - 1 4 5 p G :J +

r

b

660 IUSP "CHECK ALIGNMENT OF PLOTTER"
6 7 P L T L . G T ( ) ? G 9 -140)

1

6S0 STOP
6 9 P L r L G T ( J + 5 t G 9 ? 1

7 8 D [ 3 P " R E - C H E C l< A L I G N M E H T ? " 5

710 INPUT ,.

720 IF Z=0 'HEN 1740
7 3 G T 1 6 6

? 4 1 J V A X I S L G T :. > ? 2 ? G 9 - 1 4 » G 9
750 LABEL ( * ? Is 1 . 7, 0, 7/10)
700 FOR 'r'=G9--140 TO G9 STEP SO
770 PLOT LGT < 00) , V, 1

780 CPLOT -5? -0.3
790 LABEL <I888)Y
800 FORMAT F4.
810 NEXT V

8 2 F R X - :: L G f ( ) + I T L G T ( ) + 5

830 PLOT ' h G9-140J

1

840 CPLO i" • -L. 5 j -1 .5
350 LABEL '• I860 ' 18 + X

SOU FORMAT F3.2
370 NEXT X

380 PEN
890 RETURN
900 3 T P

9 1 SCALE LET ( 00 ) -8. 5» LET ( 08) +5 . 5 ? -325 1 425
920 H I S P " R E - C H E C K AL I G N M E N T F P L T T E

R
" 5

9 3 P LOT L G T ( > > - 3 88?

1

940 S T P

950 PLOT LGT < 08 ) +5 t 488 ? 1

9 6 S T P

970 LABEL C* ? 1 .

2

j 1 . 7> 8> 7/18)
930 FOR Y=-288 TO 108 STEP 188
998 PLOT LGT': 00 "'+4, 7? Yj 1

2868 CPLOT 8 < -8 , 3

Figure 7-2 (continued)

112





;n
i S LABEL (. 2858)

V

:828 NEXT V

:838 PLOT LGT !08>M . 95? 95? 1

40 !.. hE EL •: * > i . £» 1 - 7 s > "V 1 )
:t

BEG
:858 FORMAT F4.9
i960 RETURN
!878 STOP
: 8 I F Q I > 8 A H D Q 2 < T H E N 21 3

:098 IF QK0 hi ND Q£<0 THEN 2150
>100 IF QK0 AND 02 /O THEN 21 70
il 10 n=flTN<Qi/Q2>-180
120 GOTO 2100
:138 1 1=hTm(u:!./Q2>
1 4 G T 2 1 8 8
•150 Tl=flTN<Ql -'Q2)

•lUO GOTO 2130
1: 1 7 8 T L - .' '6 8 + f' ! H ( Q 1

••'' Q 2 )

. 188 IF • -•; 8 AND Q4<8 THEN 2230
:

s 9 8 t F ' 3 < A H D Q 4 < 8 T H E N 2 2 5 8

2 8 8 IF Q3<0 AND Q4>8 THEN 2270
. .. 18 T2=flTN<Q3/Q4)
..J20 RETURN
2230 T2=lS0+flTNCQ3^Q4)
2248 RETURN
: 25 T 2 :~ 1 8 +• A T N ( Q 3 " Q 4 )

2260 RETURN
2270 T 2 - 3 6 + A T N ( Q 3 •-' Q 4 )

2280 RETURN
2298 END

Figure 7-2 (continued)
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11 80-110 format

11 120-270 assigns values to variables, initializes
T3 (phase angle, used for comparison)

11 280-330 initializes numerator and denominator
coefficients to zero

11 3^0-5^0 computes values of numerator and denomi-
nator coefficients

11 550-1070 inputs feedback type and magnitude, com-
putes and prints closed loop numerator and
denominator coefficients

11 1080-1640 inputs frequency and magnitude limits
(of response), labels graph, and plots
magnitude and phase angle against applied
frequency

11 1650-1900 subroutine for scaling and labelling
magnitude graph

11 191O-207O subroutine for scaling and labelling
phase angle graph

11 2080-2280 subroutine which computes phase angle
correct for sign and quadrant

line 2290 END statement

To verify the program, the McRuer example was again

used. The text results are shown in Figure 7-3* The

BODE results are shown in Figures 7-4, 7~5t and 7-6 for

the three parameters common to both programs, &, *• , and

u

The comparison of the ot values of the text and the

graph of w from BODE needs some explanation. The text's
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magnitude for of at low frequency is «***+. 0; the results

of BODE showed the magnitude of w at low frequency to be

*»6l t a 57 decibel difference. For U = 660,

w = ocU = 660«

log(w) = log(660) + log («.).

Since log(660) = 56. 4, the 57 db difference is correct.

Table 7-2 compares the results of the BODE program's

transfer function coefficients with those of the text.

NUMERATORS

BODE 0.11168s 2 - 791.5148s - 11^4.^512
u

text 0.1103s2 - 799s - 1151

BODE 69.8s3 + 26675.733s2 + 258.7485s + 79.9^357
W

text 69.8s 3 + 17350s 2 + 168.6s + 80.2

BODE

6
text

26.00926s 2 + 35.93499s + 0.350U

26.12s 2 + 36.1s + O 351

DENOMINATOR

BODE s^ + 3.3597s3 + 26.6754s 2 + 0.26271s + 0.07198

text s^ + 4.22s3 + 18. 28s 2 + 0.2097s + 0.0724

Table 7-2
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Inasmuch as the text figures appeared to be slide-rule

accuracy, the results of BODE were considered more

accurate. The BODE graphs, which were computed with

zero feedback, compared very favorably with the text,

and the program may be considered verified.

The transfer functions may also be written as

functions of the stability derivatives, and, in this,

way, the effects of various types of feedback may be

predicted. Writing the equations of motion (equations

5-1 ) in the Laplace domain:

(s-Xu )u -Xww -X
qq

+ g0

-Zuu + (s-Zw )w -U q

-N^w + (s-Mq)q

-q + s8

-Muu

= X
J"<:

= Zj
c

= M<ft

=

Use of Cramer's rule allows for the solution of each

variable in terms of the stability derivatives. That

is«*

X;t -Xu' -H <V

L^ s-l* -u
%*. -Mw s-M^

u(s] -\ s

6«(s) A
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where A =

s- X« -y>sr -xv <t

-1. s-l*r -"CTo

-Mm -M* s-M^

*\ s

The transfer functions for w(s)/Je(s), q( s)/<5
>

c ( s ) , and

£(s)/<5e(s) are similarly found. Compiling the coef-

ficients for each of the numerators yields Table 7-3*

The time history response may be obtained by sub-

stituting the error signal for the input term to the

plant matrix. In other words, where, for the open loop

system,
x(t) = [aJx^ + {b}u,

in the closed loop system

r(t)-^ -to—/
i /f

k *

x(t)

u = r - kx, and x(t) = [aJx + {b} (r - Lkl{x]).

Rewriting,
x(t) = (A - bkT )x + br.
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As originally formulated,

[A] =

Lu

»u

wu

Xw

Zw

and

M -{

U +Zq

Assuming the input to be zero

(r = 0), the effects of a speed

error feedback can be seen by

letting LkJ = Lku ° ° °J

and solving for I A - bkT :— U ****** J

^jl>J

c

n

Xv* - X<rc Wv, X^r *v "!

£«* *" I^Jc k„ t/^ u.*X
v

M*- Mtfe.k* AW «\
»

-J
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This is the new plant matrix from which the eigenvalues

may be calculated and roots plotted. As ku is varied, the

roots move,. and this movement is the critical factor in

retaining, gaining, or improving stability. Plotting

the roots also shows how variations in k affect the

undamped natural frequencies and damping ratios and gives

a rough idea of the sensitivity of the system.

In order that the roots of a given system subject

to feedback could be quickly ascertained, a program

named FDBK was written for the HP9830. Using as inputs

the resolvent matrix of the open loop system, the control

Vector {b}, the coefficients of the open loop character-

istic equation, and the type and magnitude (gain) of the

feedback, the program computes |_A - bkj J , finds and prints

the new roots, and calculates the resulting frequencies,

periods, and damping ratios. See Figure 7-7 for a listing

of FDBK. The REMark statements in the listing provide an

explanation of the procedures used.

Figure 7-8 is an example of the program's output.

In this case, the Mc Ruer example was again used with no

feedback applied; the results were in agreement with the

example.
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•:Q'1 U I j r AM FOB I 08BE i

16 R
20 R
30 R

4 6 R

56 R

60 R

70 D

80 R
90 F
1

110
120
130
140
150
160
170
130
1 9
200
210
220
230
240
250
c60
270
230
2 9

300
310
320
330
240
358
3 6
370
3 3
3 9

400
410
420
430
440
450
460
470
430
490
500

EM THIS PROGRAM TAKES fl 4X4 RESOLVENT MAT I

E M S T A T E M E H T S ? C H S T R U C T S T H E P E N - 1.... P T

I

EN AND FINALLY j BY APPLYING FEEDBACK FROM
EM FOUR PARAMETERS j CONSTRUCTS THE CLOSED
EM MATRIX? THE FEEDBACK MAY BE LINEAR? K--

EN APPLIED AT ALL, ANY VALUE OF FEEDBACK
I M AC 4 » 4 ] » BC 4 » 4 3 j CC 4 j 4 It DC 4? 4 1> EC 4* 4 3 s F[ 4 *

EM INITIALIZE COEFFS TO ZERO
OR 1=1 TO 4

FOR J=l TO 4

AC I ? J 3=BC I » J 3=CC 1 ? J ] = DC I j J 3 = EC I ? J 3=FC I > J 3=

NEXT J

GC I 3=HC I 3=IC I 3=J[ I 3=KC I ]=ME I 3 =

NEXT I

PRINT
WRITE -:: 1 d - 180)
FORMAT 45"*"
FORMAT 22" *"

PRINT
REM ENTEF
MAT READ B
DATA ? 0. 7567 ? -4 6. 046 j -627. 429
DATA 0i0. 004061 ? 3. 0646s 5. 91353
DATA O? O' 0^ -0. 7797
DATA O . 0O242 j -0 . 00023 * 9. 140 1 » . 1 393
MAT READ C

DATA 19.4854, 0, 004443? -31 . 144? -135.5613
DATA -O. 13 365? C . 02695' 6. 401356? 3. 075099
DATA O. 0O242? -0. 00023 j 0. 01401 j -0. 0039928
DATA O. 000124' -0, 0235? 1 . 4397? 19. 52637
MAT READ D

DATA 4. 21 0. O016' O? -32.

2

DATA -0 . 0355 ? 2 - 7 397 » 66^} i

DATA O. 00O124. - 3 . 0235? 1 , 4397?

UX FF ON DA ra

RANSFE R F UN C 1" I c N :

ANY C NE OF THE
-LOOP TRF NS FER
::i j K * ::: !' L R NOT
gain' MA'i B E U '•: ED
4]>MC< "J

RESOLVENT MATRIX IN INCREASING POWERS OF S

DATA 0?O'
MAT READ

4. 2

DATA
DATA
DATA
DATA
REM

1 ' ? ?

? 1 ? ?

J ? 1 ?

? ? ? 1

ENTER CiCONTROL VECTOR <B>
MAT READ M
DATA ? -69 . 8 ? -26 . 009 ?

REM ENTER COEFFICIENTS OF ORIGINAL
REM IN INCREASING POWERS OF S

READ N0?N1'N2.N3?N4
DATA 0.S7797- 0. 19329? 19.52637? 4.2197?

1

1ARACTERISTIC EQUATION

DISP "V
INPUT L

FDB! LINEAR? K*Sj OR K/S"

Figure 7-7
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8

IT "i , "|

536
540
556
560
578
5S0
5 9 8
680
610
620
630
6 4

650

670
638
6 9 8

P0-
•"

1

720
? 3 Q
748
750
," 6
770
780
7 9

800
310
820
8 3
340
350
360
3 ?

3 8:

3 9
9

910
920
930
940
950
960
970
930
9 9
1

DISP 'WHICH
INPU1 Z

DISP "ENTER
INPUT' K

[F Z#l
PRINT
IF Ztt2

PR INI"

IF Z#3
PRINT
IF Z#4
PRINT
PRINT
REM M

PARA METER DESIRED FOR FDI

ifll

THEN 570
"FEEDBACK
THEN 590
"FEEDBACK
THEN 610
"FEEDBACK
THEN 630
"FEEDBACK
"GAIN = "K
ULTIPLY PHI

PARAMATER

PARAMETER

PARAMETER

PARAMETER

) TIME::

IS

IS

IS

HORIZ VE

VERT VEL

... iJ i

'i i":

IT'T

TV"

REM NUMERATOR OF GO CI

FOR 1=1 TO 4

FOR J=l TO 4

HE I ]=BC In J]*MC J3+HE I ]

I[ I 3=CE In J3*MC J] + IC I ]

JC I 3=DE I? J3*ME J3+JE I 1

l<[ I 3=EC Ii J3*MEJ3+KE I 3

NEXT J

I

DENOMINATOR OF
LINES 440-4 7O)

I

B
OPEN

PITi

PIT"

:H Rl

:H Hi

CONTROL
LOOP TX

TO

IRTR

1=1

:-j]
J 3*MC
J3*ME
j:*mc

NEXT
REM
REM
REM
REM
REM
F OR
r=ec z<

U=CE Zs

V = BC2-
W=ECZ»
X=FEZ?
NEXT J

IF L=@
IF L=l
IF L = 2
IF L=3
PRINT
PRINT
S=T*K
T=U*K
U=V*K
V=W*K
W=X*K
X = O

GOTO 120O
PRINT 'FEE

8 PRINT

Ni

IS THE SAME
THE DENOMINATOR IS

' PLU:
. 4

• ir 13 + T

G6<S) IS THE CHARACT
IMERATOR OF CLOSE
A3 THAT OF THE
OF THE FORM H TI

HAR EQN OF PLANT MATRI

ERI'
D-Li
PEN-
MES

TI
TRA

OP M
M < B (

NSFER
ATRIX
JVrRH

13 + U
J ]+V
J 3 + U

me j ]+:

THEN
THEN
THEN
THEN

9 y @
1 O 3

1110
9 @ 8

FEEDBACK MODE IS K-

DBACK IS NOT APPLIED"

_ /

Figure 7-7 (continued)
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1810 T-U=V=W=^=! Y = a

1020 GOTO 1260
1030 PRINT "FEEDBACK MODE IS LINEAR"
1040 PRINT
1050 T=T*K
1060 U=U*K
1070 y=V*K
1030 W=W*K
1090 ft =

!

::
! * K

1100 GOTO 1200
1110 PRINT "FEEDPACK MODE IS K*S"
1120 PRINT
1130 Y=X*K
1140 X=W*K
1150 W=V*K
1160 V=U*K
1170 U=T*K

'

1130 T=0
1190 GOTO 1200
1200 REN SUMMING TERMS IN DENOMINATOR OF CLOSED-- LOOP TX MATRIX
1210 S=S
1220 T=T+N@
1230 U=U+N1
1240 V=V+N2
1250 W=W+N3
1260 X=X+N4
1270 Y-Y
1230 WRITE (15> 190)
1290 PRINT
1300 PRINT "THE COEFFICIENTS OF THE NUMERATOR OF THE CLOSED-LQQI
1310 PRINT " 'FROM St-<0) TO S+<3>)"
1320 PRINT
1330 FOR 1=1 TO 4

1340 PRINT "COEFFS OF GC'I" )"

1 350 WR I TE ( 1 5 ? 1 479 > HE I 3 j I C I ] j JC I ] s KC I J

1360 PRINT
1370 NEXT I

1330 WRITE (15 j 190)
1390 PRINT
140O PRINT "COEFFICIENTS OF THE DENOMINATOR ARE:"
1410 PRINT "

( FR M S t < - 1 ) T S t < 5 )
)

"

1420 PRINT
1430 WRITE (15»14?0)S»TjU»V
1440 WRITE (15 ? 1470)WiX»Y
1450 PRINT
1460 WRITE (15) 190)
1470 FORMAT 4F15.7
1430 IF S=0 AND Y=0 THEN 1530
1490 GOTO 2143
150O STOP

Figure 7-7 (continued)
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510
520
530
540
550
560
570
530
5 9
6

b 10
620
630
640
6 5
6 6
670
630
690
700
710
720
730
740
750
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770
730
790
8
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320
8 3
340
350
8 6
370
330
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90O
910
920
930
940
950
9 6
970
930
9 9

2000

REN
REM
PR IN
REM
REM
R9=l
39=1
R4=rt
R3=W

R1=U
R8= T
B4 = fi

B3=R
B2 = H

61=fi
B0 = fi

IF fl

IF H

THIS PROGRAM CRLCULflTES THE
ORDER FOLYNOMIflL USING THE M

cot

OD F I E TON METHOD

s y = ~

R9 = -

GOTO
IF (

GOT i

i=:

3+R9*B4
2 +R9 * B 3 + S 9 * B 4

1+R9*B£+S9*B3
+ S 9 * B 2

BS(B0)>lE-0 2 THEN 1700
BS(BlX1E-02 THEN 1730
R0/B2
(R1+S9*B3>/'B2
1630

R9+2+4*S9)<0 THEN 1730
R 9 + S Q R ( P 9 "t 2 + 4 * S 9 )

!

i / "'

R 9 - 3 Q R ( F 9 1 2 + 4 * S 9 >

'

i
..•• 2

6 =

1 8 1

2 = R9-'2
Q R < R B S ( R 9 "T- £ + 4 * S ' 3

)

1 / 2

IF

I .1 Tl „„, I

GOT

PR I

PR I

PR I

WRI
WRI
WRI
WRI
PR I

PR I

WRI
FOR
F

I

X

t2-4*B4*B.2><6 THEN 1360
3 + S iJ R • B 3 T 2 - 4 + 3 4 * B 2 > ') / 2

3-SQR' B3t2-4*34+B2> )/2

890
-B3.--2

<fiBS(tf3+2- ,-*64*B2) >--"2

"THE EIGENVALUES ARE"

RERL PRRT I NRG P

B3
-B
-B

1

X4 =

SQR

nt"
NT
NT
TE
TE
TE
TE
NT
NT
TE CI

5

j 190)
MRT 3XiF18.5»5X»F10.5
ED 4

RR'

(15 j i390>:>-;

(15? 1990>X
(15? 1990

)

(15? 19 9 O

;

1 ? X5
2>tiS

4jX8

Figure 7-7 (continued)
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:wi0
:02u
1030
5040
: @ 5 9

: m k 8

5080
:09Q
1100
1110
1120
1130

PR I

PR I

PR I

PR I

PR I

PR I

PR I

PR I

PR I

FOR
v 9 = X

Y9=Y
STOP

NT
NT "PiQUE I FREQUENCY I

NT " PERIOD I

NT " DAMPING RATIO I

NT
NT "MODE II FREQUENCY I

NT " PERIOD I

NT " DAMPING RATIO I

NT
MAT 5F12-5

'

' S Q R < X 1 1 2 + X 5 + 2 > " R A D I A \ I S P E R 3 E C N D
" 2*P I / S Q F: ( X 1 1 2+X 5 + 2 >

" S E C N D
S

"

H -Xl^SQR<Xlt2+X5t2)

"SQR< X 3 t £ +

)

"2*PI/SQRO
7t2) "RADIANS PER SECOND
3+2+X7t2> "SECONDS"
T2+X7t2)

Figure 7-7 (continued)
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Figure 7-8
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Figure 7-9 (a,b,c,d) shows how the roots vary

as the feedback gain is varied and as different para-

meters are fed back. Complex conjugates are not shown

where their omission would be confusing. These results

are tabulated for more careful scrutiny in Table 7-^«

Figure 7-10(a) depicts the time history of the

r/I
cRuer F-89 aircraft subject to an initial condition

of vertical velocity =10 fps. No control inputs are

postulated. The parameter chosen to display system

response is pitch ane\Le; it was chosen because of its

good definition of short period and phugoid motion.

Feedback of horizontal velocity error can sub-

stantially increase phugoid damping before the short

period mode is much affected. However, a further

increase in the gain of this error signal will drive

the short period to instability* The sensitivity of

the system in this regime is shown by Figure 7-10(b);

here, with ku = 0,02, the short period motion is less

than critically damped and oscillates several times

before dying out. The damping effect on the phugoid

is readily apparent.

Feedback of vertical velocity (or angle of attack),
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Figure 7-9
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(c) kg feedback

-2. -<

PHUfiiOip
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-3

(d) k
d

feedback

Figure 7-9 (continued)
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Feedback parameter: HORIZONTAL VELOCITY (u)

gain 0.002 0.02 0.05 0,075 SU1.
T(sp)
*(sp)
T(ph)
S(ph)

1.42
0,477
99.35
0.072

1.44
0.475
17.86
0.097

1.60
0.444
5.16

0.297

1.89
0.154
2.76

0.702

I.67
-0.02
2.55

0.888

1.52
-0.10
2.43

0.980

Feedback parameter: VERTICAL VELOCITY (w)

ffain 0.001 .00105 .0013 .0015
'

.003
T(sp) 1.42 1.77 1.65 1.32 1.18 0.78
T(sp) 0.477 1 1 1 1 1

T(ph) 99.35 165.17 75.04 68,11 78.43 89.15
Kph) 0.072 1 1 0.108 0.082 0.072
T3 - 254.69 112.48 - - -

T4
- -1 -1 - - -

- 10.54 20.14 9.56 5.10 1.55
n 1 1 -1 -1 -1

Feedback parameter: PITCH RATE (q)

s:ain 0.01 0.02 0.05 0.1 0.25
T(sp)
t(sp)
T(i>h)
S(ph)
T
3

1.42
0.477
99.35
0.072

1.41
0.502

100.25
0.072

1.40
0.526

101 .14
0.073

1.36
0.598

103.75
0.074

1.31
0.710

107.97
0.076

1.31
1

119.69
0.084
1.06

"S3
— — — — — 1

Feedback parameter: PITCH ANGLE (Q )

gain 0.01 0.02 0.05
T(sp)
T(sp)
T(ph)
5(ph)
T3

1.42
0.477
99.35
0.072

1.42
0.473
97.71
0.211

1.41
0.469
96.18
0.343

1.39
0.456
92.16
0.702

*3
"" mm

0.08
1.37
0.445
73.18

1

107.12
1

0.1
1.36
0.437
45.98

1

163.04
1

Table 7-4
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if the gain is small, will increase the frequency and

damping ratio of the short period mode. Since the angle

of attack signal is l/660th of the vertical velocity

signal, it would be a better parameter from which to

obtain an error signal. Increasing the gain of this

feedback will cause a third mode to go unstable; however,

its period is so great that no problem would be antici-

pated in controlling it manually. A further increase

in gain will cause a fourth mode of significantly shorter

period to go unstable. Since its period decreases rapidly

with an increase in gain, it may be assumed that values

of gain in this region are to be avoided. Figure 7-10

(c) shows a time history of pitch angle versus time with

kw = 0.0001 and w = lOfps.

Feedback of pitch rate has almost no effect upon

the phugoid motion but appreciably increases the short

period damping. This very desirable feature makes this

parameter useful in speed, altitude, and attitude hold

modes for auto-pilots. Figure 7-10(d) shows a time

history of pitch angle against time with k^ = 0.1 and

w = ^Ofps.
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Pitch angle feedback is also an excellent method

of improving longitudinal response. In this case, the

phugoid damping is significantly increased at the expense

of short period damping. If short period damping is mar-

ginal to begin with, use of this feedback may cause an

instability in that mode. Figure 7-10(e) shows the

effects of kg = 0.05 on the time history of the pitch

angle perturbations with w = lOfps.

Use of both pitch rate and pitch angle feedback

together should provide an ideal system with maximum

increase in damping ratios and minimum increase in

frequency. Using the same feedback gains as above, the

response is shown in Figure 7-10(f).

The equations of state for each of the above

examples were obtained by entering BASMAT with the

modified plant matrix \A - bkTJ and multiplying the

resulting state transition matrix by the initial condition

vector in accordance with the equation

f°
xjt) = $(t)x(0) where x(o) =<

J

lo J.

One further conclusion was reached in this treatment
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of feedback: the two parameters which are most affected

in phugoid motion, forward velocity and pitch angle, were

the two whose feedback most affected that motion. Their

effect on the short neriod was minimal. Likewise, the

two parameters which are relatively constant in the

phugoid but which vary considerably in the short period,

angle of attack and pitch rate, had little effect on

the phugoid but significantly damped the short period.
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VIII. THE ORBITER

The Aerodynamic Design Data
'

Book was obtained from

NASA's Lyndon B. Johnson Space Center in order to obtain

data necessary to calculate the stability derivatives and

to acquire the block diagram of the longitudinal control

system (automatic mode) of the space shuttle orbiter.

The environment chosen for the study was the area at

which the Mach' number was 1 .05. This area was chosen

because the aerodynamics are undergoing rapid change here,

and it would provide a testing challenge for programming

and solution.

The stability derivatives were found by plotting

the force and moment coefficients with respect to velocity

(U) and angle of attack and then measuring the slope; see

Figures 8-1 through 8-6. By choosing points close together

where the slope was rapidly changing, piecewise linearity

could be assumed between them. The results are shown in

Table 8-1. The derivatives with respect to cfc were also

taken from the publication; the graph of &Cj> -vs- 6$

is shown, as an example, in Figure 8-7. The 6"

e derivatives

are listed in Table 8-2.
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AOA (dee:) *..

5
7.5

10
12.5
15

0.0564
0.0564
0.0528
0.0500
0.0500

U (fps) Cu.

920.1
1016.9
1065.3
1162.2

0.0
7.23E-4

-1.24E-4
-1.75E-4

AOA (deg) C Det

5
10
15
20

0.0046
0.0138
0.0234
0.0320

U (fps) £*«

968.5
1016,9
1065.3
U13.7

5.79S-4
3.10E-4
1 .24E-4

-2.10E-5

AOA (deg) Cm,

7.5
10
12.5
15

-0.0080
-0.0048
-O.OO36
-0.0048

U (fps) €«*

920.1
1016,9
1065.3
1162.2

-6.40E-4
-1.55E-4
0.0

-1.65E-4

Table 8-1

Se <^<
-20° 0.0057
-17.5 0.0072
-15 0.0076
-10 0.0086

0.0108
20 0.0142

6, £»tf&

-25° -0.0018
-20 -0.0014
-15 -0.0012
-10 0.0024
-5 0.0050

0.0080

c5e Cmjc
-30° -0.0010
-25 -0.0016
-20 -0.0026
-15 -0.0042
-10 -0.0058

-0.0067
20 -0.0089

Table 8-2
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In cases where U was the independent variable, angle

of attack was assumed to be 10°; where angle of attack

was the independent variable, U was 101 6. 9 fps (Mach =

1.05). The <$e, derivatives were based upon an angle of

attack of 10°.

The point in the design reentry trajectory where the

Vach number is 1.05 occurs at approximately 62000 feet in

altitude. Also, at this point, the load factor n
2

=

1.09, and the air density
f>

= 2.0325S-4- slugs/ft^.

Other constants which are required for computations

are

:

wing area = 3 = 2690 ft 2

wing M.A.C. = c = 39.5© ft

moment of inertia = Iv = 5.7830S+6 slug-ft2

gravity = g = 32.073 ft/sec 2 (corrected

for altitude and latitude)

pitch angle = @ = 9«0 deg

mass = m = 5839 slugs

For the condition of Mach = 1.05 and angle of attack

= 1 0°, the stability derivatives take on the following

values:
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Entering these values into the plant matrix (see page

54-) yields

W-

-0.04410 0.0284-9 0.0 -32.073

-0.0984-5 -0.01635 1016.9 0.0

-4.683E-4 -9.730S-6 -0,09877 0.0

0.0 0.0 1.0 0.0

(b) =

f
-0.4-4-219

J
-0.784-89

\ -0. 01476

a

Entering 3ASMAT with £a] yields the results shown in

Figure 8-8. Using the GRAPH program developed in Chapter

VI (see page 71 ) » the time response to an initial condi-

tion of w = 10 fps was plottedo The results are shown

in Figure 8-9. The vehicle is clearly unstable in the

open-loop configuration.

A look at the eigenvalues printed out in Figure 8-8

showed that the phugoid had disappeared, being replaced

by two real roots, one of which was positive.. Although

the negative (stable,) root was larger, the instability

became dominant very quickly.

The eigenvalues were not widely separated, having
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periods of 75»1> 6l.2, and 39*7 seconds, respectively,

so the short period was effectively missing as well.

Although its theoretical damping ratio was 0.^337> it

was completely supressed by the instability of the

positive real root.

It was obvious that some form of feedback network

would be necessary so that the stability of the vehicle

would be more in line with that of conventional aircraft.

And, since the orbiter was designed to fly at the very

extremes of atmospheric conditions, the system would

necessarily depend upon many parameters, among them

dynamic pressure, Mach number, true airspeed, load factor

(which is a function of C u ) , pitch angle and rate, angle

of attack, and elevon deflection angle,, Other factors

could have been used, e.g., vertical velocity, descent

angle, to name a few, but the ones chosen appeared to be

those most easily obtainable and from which other

necessary information could be computed. The end result

of the engineering design is shown in Figure 8-10.

In order to solve the equations of motion as they

were modified by the various gains, feedbacks, lead-lag

elements, and limits, the Continuous System Modeling

Program (version III), as incorporated on the IEM360,

was utilized.
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The system variables were assigned names as follows:

N z command = GCMD

true airspeed = Ul

N z ~g = NZ

Q = THETAl

horizontal velocity
perturbation = XI

vertical velocity
perturbation = X2

pitch rate perturbation = X3

pitch angle perturbation = X^

elevon deflection
perturbation = X8

The input signal to the first lead-lag element was

called X5IN and its output called X5» The input to the

second lead-lag element was called X6IN and its output X6.

The signal entering the St LIMIT was called X8PRE1

and the limited signal X8PRE2; the signal entering the

<Se LIMIT was called X8PRE3 and its output called X8D0T;

the integration of X8D0T was X8 . The signal X8 was fed

back through a lag element whose output was labeled X7.

The CSMP III program is divided into three segments,

INITIAL, DYNAMIC, and TERMINAL. The INITIAL part is for

defining parameters whose value will not change for the
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duration of the program. The DYNAMIC segment contains

the equations of motion and other computations. The

TERMINAL section (optional) contains any final operations

which are desired. For this analysis, the following

terms were assumed constant:

gravity = GRVTY = 32.073 ft/sec 2

X
q

= Z
q

= 0.0

density = RKO = 2.0325E-^ slug/ft3

Cjyi£ = CMADOT = -2.0

The initial values of two parameters were listed:

pitch angle = THSTA = 0.1571 rad

true airspeed = U0 = 101 6. 9 fps

The other constants listed in the program (see Figure

8-11) are dimensional parameters or mass properties of

the orbiter. AREA refers to wetted wing area; ISUBY

(Iy) is the mass moment of inertia about the pitch axis?

CHORD is the reference wine: chord length; MASS is the

mass of the vehicle with the payload out.

The FUNCTION statements enable the program to find

a dependent variable knowing the value of the independent

variable, much like reading a graph. The interpolation

between the points listed in the statement may be linear

or quadratic. Should an independent variable value fall
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outside the range of points listed, the program will

extrapolate a value based on the slope of the function

at the nearest ooint listed.

The FUNCTION statements are entered with an AFGEN

command (for linear interpolation). Since linear inter-

polation was used in this analysis, it was necessary to

insure that the dependent variable varied linearly

between the points chosen. The functions were

F1 : CMDE = C/^St

CDDE = C p<re

GLDE = C^
c

GCMD = (\i
Wmmftni

CLA = <£u,

CD = C

clu = eUu

CL = Cu

CDA = C^
CDU = fix>u

CMU = C^
CM = £M

CM = ^
CMQ = Cm.

F2

F3

p4

F5

F6

F7

FB

F9

F10

Fll

F12

Ft 3

Fl^
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These coefficients were in turn used to compute the

stability derivatives. As the values of the independent

variables changed, so did the dependent variables and so

also did the stability derivatives. In this manner, the

stability derivatives were modified due to changing

flight conditions, and thus an important facet of the

model was maintained. The stability derivatives were

then used to write the equations of motion (the X1D0T

through X^DOT equations).

The modeling of the system was completed by writing

four other equations as the block diagram signified.

X5 and X6 were written simply as lead-lag (LEDLAG)

functions of X5IN and X6IN, respectively, where the

parameters listed were the coefficients of s in the

numerator and denominator.

The term X7 was found by writing the lag compensation

from which it came as a differential equation. Since

output divided by input equals the transfer function,

X7 _ t.5
XS ~ s + 1.5

(X7)s + l.5(X7) = l.5(X8)

Taking the inverse Laplace transform,
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X7 = 1.5(X8) - 1.5(X7)

and X7 = / X?

Writing this in the CSMP III language,

X7 = INTGRL(0.0,X7D0T)

where the 0.0 refered to the initial condition.

The equation to find XS was somewhat more complex.

The signal was first the sum of GDQ*X6 + X7 = X8PRE1

;

this was then limited to -35/+20 , compared to X8, and

the difference multiplied by 20 (here, in radians).

After limiting this signal to -20/+20 per second, it was

integrated to find X8.

The eight equations were solved simultaneously using

the STIFF method of integration, and, after converting

some of the parameters into degrees, the results were

printed.

It may be seen from the block diagram that the forcing

function is the command load factor, GCMD. This value,

plotted as FUNCTION F^, was available from the Aero -

dynamic Design Data Pook and was programmed accordingly.
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The value of CMADOT was not available from the

above publication. To arrive at the value of -2.0,

several aircraft were studied, considering wing plan-

form, aircraft size, airspeed, and altitude. The larger

aircraft (C-47 and DC-8) had values of -10 and -6.8,

respectively, the DC-8 figure being at Mach 0„88 and

33000 feet. The A-4D, having a delta planform, had a

Cf/r. of -2.1 at 15000 feet and -1.4 at 35000 feet.

Considering the size of the orbiter and its altitude

for this study, the value of -2.0 was deemed appropriate.

Several equations to compute the load factor on the

vehicle were considered. The one chosen was derived from

the lift equation:

n z = ^ where L = Ci/Js

so, n z = CLqS/mg

= CL*QHAT*AREA/(IV!ASS*GRVTY)

This equation was chosen as it was most independent of

the equations of motion and would therefore amplify to

a less extent any errors due to integration round-off or

to other sources during the solution of the simultaneous

equations.
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The results are shown in Figure 8-12 (short period)

and Figure 8-13 (phugoid). Inasmuch as both modes were

evidently stable, the steady state magnitudes were

extremely high. Several causes must be considered.

One, the equations of motion were written as per-

turbed motions. This was necessary in order to justify

their linearization. The parameter values were treated

as perturbations throughout the program, being added to

the large scale motion where necessary for computation

(as in the case of THETA 1 and Ul ) and for output plots.

Their initial conditions were collectively zero. The

initial conditions for the other parameters, X5 through

X7f were not zero, however, and a method for incorpora-

ting (or even deriving) their initial value was not

available. The initial condition for X8 was available

from the Data Book and was so used. It is not known

if the lack of initial conditions for these parameters

caused the large excursions in the response; it is

doubtful that this v/as the case because the steady state

values should still have been reasonable; they were not.

Two, the simulation was begun at some point other

than t=0 in the trajectory. That is, the vehicle had
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already entered the atmosphere, was flying aerodynamically,

being commanded, responding, etc., in short, was in a

dynamic environment when this program started. Unless

the parameters existing at t for this simulation can be

precisely ascertained, it is doubtful that meaningful

results can be expected.

To this end, angle of attacft corresponding to the

commanded load factor at t was calculated:

n s = 1.09 = CL (!pv2)5/mg

Solving for G^ yielded 0.722. Since the angle of attack

at 1.0 "g M was 10° with a CL of 0.5^4, the angle of

attack at 1.09 "g" was found to be 10°(0. 722/0,5^)

or 13.27° (0.2316 rad).

An initial pitch rate would affect the X2 coefficient

in the X1D0T equation and the XI coefficient in the X2D0T

equation, so it was computed using n z = QoU /g + U0

and found to be 0.03^ rad/sec

Both of these modifications were made to the program

with negligible effect on the results.

To analyze the results as they stand:

The ansrle of attack first exceeded the limits of the
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FUNCTION statements (requiring interpolation of the force

coefficients well outside the linear range of the functions)

at approximately 2 seconds, oscillated in and out of the

range, and left the range for good at approximately 10

seconds. All stability derivatives dependent upon angle

of attack must be considered suspect after this time.

The angle of attack was computed by dividing the vertical

velocity perturbation by the horizontal velocity and adding

this to the initial angle of attack.

The vertical velocity response (positive is downward)

reached an extremely high value very quickly, and if applied

to altitude, would have the orbiter impacting the ground

before the simulation period was half over. Such a rate

of descent would also cause a rapid change in air density,

which was originally assumed constant, leading to very

different values of those stability derivatives proportional

to RHO. The assumption of a constant RHO should be valid

for the three minute duration of the simulation.

The pitch rate magnitudes are not unusual, perhaps a

bit high, but the steady state pitch angle is much too

high. The steady state values of 58° pitch angle and 71°

angle of attack indicate a glide angle of 13°» also much

too high.
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The elevon deflection, going to the trailing edge up

limit in just over ten seconds, indicated that the vehicle

sensed an insufficient nose up pitching moment with a

GCMD of 1.09 and was trying vainly to create that moment.

The result of the full trailing up deflection was instead

a stalling angle of attack and a high rate of descent.

The actual load factor experienced by the vehicle in

the simulation was only slightly higher than expected; the

large elevon deflection was undoubtedly the cause of the

initial rapid rise in this parameter. However, since the

program computed n z as a function of p , the steady state

value was meaningless.

Taking the above observations into consideration, the

program appeared to be consistent. Many possible reasons

for the magnitude discrepancies were examined, but no

changes in the program made more than a modicum of change

in the results. It appeared that the error was basic in

nature and not related to the model as presented or to

the CSMP program. The most likely cause is, as was

mentioned earlier, the fact that the simulation is not

commencing at t=0.
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